

55576 Sprendlingen • Kreuznacher Straße 62 • Tel.: 06701 - 200 955 • Fax: 06701 - 200 7960

Geotechnischer Bericht

zum Bauvorhaben

64372 Ober-Ramstadt (Ober-Modau) - Errichtung einer Wohnbebauung, Städtebauliches Konzept "Odenwaldstraße NORD" und "Odenwaldstraße SÜD"

Projekt-Nr. B 19-1328-1

Auftraggeber

Objekt Modaublick GmbH & Co. KG Willy-Brandt-Allee 6 65197 Wiesbaden

> 29. September 2019 - ke/K -

info@kern-geolabor.de

Seite 2

Inh	naltsverzeichnis	Seite
1.	Veranlassung und Beschreibung des Bauvorhabens	4
2.	Unterlagen	4
3.	Untersuchungsumfang	5
4.	Baugrund und bodenmechanische Kennwerte	7
	4.1 Allgemeine Beschreibung der Schichtenfolge	7
	4.1.1 Oberboden (Schicht 1)	7
	4.1.2 Auffüllungen (Schicht 2)	8
	4.1.3 Lehm- und Verwitterungslehmschichten (Schicht 3)	9
	4.1.4 Felshorizont, Felszersatzzone (Schicht 4)	11
	4.2 Grundwasserverhältnisse	12
	4.3 Bodenmechanische Kennwerte / Bodenklassen und Homogenbereiche	13
5.	Baugrundbeurteilung und gründungstechnische Empfehlungen	16
	5.1 Allgemeine Hinweise zur Gründung der Wohnbebauung	16
	5.1.1 Gründung der Wohnbebauung mittels elastisch gebetteter Bodenplatten	17
	5.2 Bauwerksabdichtung	20
	5.3 Baugrube und Rückverfüllung der Arbeitsräume	21
	5.4 Geodynamik	21
	5.5 Versickerungsfähigkeit der oberflächennahen Baugrundschichten	22
6.	Abfallrechtliche Deklaration anfallender Erdaushubmassen	23
	6.1 Verwertungen in technischen Bauwerken gemäß Baumerkblatt	24
	6.2 Verwertungen in bodenähnlichen Anwendungen gemäß Baumerkblatt	26
	6.3 Verwertungen nach BBodSchV im Bereich durchwurzelbarer Bodenschichten	27
	6.4 Deponiebautechnische Verwertungsmaßnahmen nach DepV	27
7.	Zusammenfassung und Schlussbemerkungen	28

Seite 3

Tabeller	Tabellenverzeichnis			
Tabelle 1	erbohrte Grundwasserstände	12		
Tabelle 2	bodenmechanische Kennwerte und Bodenklassifikationen	13		
Tabelle 3	Kennwertbandbreiten zu berücksichtigender Homogenbereiche	15		
Tabelle 4	abfallrechtliche Deklaration der untersuchten Bodenmischproben zur bautechnischen Verwertung	25		
Tabelle 5	abfallrechtliche Deklaration der untersuchten Bodenmischproben zur Verwertu unterhalb durchwurzelbarer Bodenschichten – bodenähnliche Anwendungen	ing 26		

Anlagen

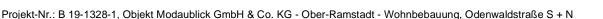
Anlage 1	Plan zur Lage unserer Aufschlüsse vom 03.09. bis 05.09.2019
Anlage 2	Profildarstellung unserer Bohrungen 1 bis 6
Anlage 3	Rammdiagramm unserer Rammsondierungen DPH 1 bis DPH 6
Anlage 4	Messprotokolle unserer Bohrlochinfiltrationsversuche Bohr-Inf 1 und Bohr-Inf 2
Anlage 5	Ergebnisse unserer exemplarischen Grundbruch- und Setzungsberechnungen
Anlage 6	Prüfbericht CRM19-008454-1 der Wessling GmbH vom 12.09.2019
Anlage 7	Tabellarische Bewertung der Umweltanalytik – Probe MP Boden 1
Anlage 8	Tabellarische Bewertung der Umweltanalytik – Probe MP Boden 2
Anlage 9	Tabellarische Bewertung der Umweltanalytik – Probe MP Boden 3
Anlage 10	Tabellarische Bewertung der Umweltanalytik – Probe MP Boden 4
Anlage 11	Probenahme- und Probenvorbehandlungsprotokolle nach LAGA PN 98 bzw. DIN 19747 (Protokolle des Probennehmers)

Seite 4

1. Veranlassung und Beschreibung des Bauvorhabens

Die Objekt Modaublick GmbH & Co. KG mit Sitz in Wiesbaden, beabsichtigt die Entwicklung einer Wohnbebauung in 64372 Ober-Ramstadt (Ober-Modau). Das uns im Entwurf vorliegende Städtebauliche Konzept sieht eine zweigliedrige Entwicklung mit einer räumlich bedingten Untergliederung in die Gebiete "Odenwaldstraße Nord" und "Odenwaldstraße Süd" vor. Zur fachgerechten und wirtschaftlichen Planung, der zur Errichtung der Wohnbebauung erforderlichen gründungstechnischen Leistungen, sind fundierte Kenntnisse über die örtliche Baugrund- und Grundwassersituation erforderlich.

Die Objekt Modaublick GmbH & Co. KG erteilte unserem Büro per E-Mail am 23.08.2019 den Auftrag, im Bereich der beiden zu entwickelnden Gebiete eine Baugrunduntersuchung zur Errichtung der geplanten Wohnbebauung durchzuführen.


Die beiden zu entwickelnden Gebiete liegen in der westlichen Ortslage von Ober-Modau, oberhalb der Odenwaldstraße. Die überplanten Flächen lagen, zum Zeitpunkt unserer Untersuchungen, in kleineren Arealen noch überbaut, ansonsten als Wiesengelände vor. Die Wohnbebauung wird, nach den uns vorliegenden Informationen, ohne Unterkellerung als Doppelhausbebauung in Massivbauweise, mit Außenabmessungen von jeweils ca. 12 m x 10 m zu errichten sein. Weitere Angaben zur projektierten Wohnbebauung liegen uns nicht vor. Die Abmessungen der erforderlichen Gründungskörper wird, anhand der Ergebnisse unserer Baugrunduntersuchung, noch festzulegen sein. Die Ebene des Fertigfußbodens (OK FFB) wird, auf unterschiedlichen Höhen der gegebenen Morphologie folgend, nur unwesentlich über OK Gelände an den jeweiligen Gebäudestandorten vorausgesetzt.

Im vorliegenden Bericht werden die Ergebnisse unserer Baugrunduntersuchung vom 03.09. bis 05.09.2019 zusammenfassend dargestellt und im Hinblick auf die anstehenden Gründungs- und Abdichtungsarbeiten eingehend beurteilt.

2. <u>Unterlagen</u>

Zur Durchführung der beauftragen Untersuchungen standen unserem Büro, neben den einschlägigen Normen, Vorschriften und Richtlinien, die folgenden Unterlagen zur Verfügung, die uns seitens der Objekt Modaublick GmbH & Co. KG am 29.06.2019 per E-Mail übermittelt wurden:

Seite 5

- [1] Freiflächenplan Dipl.-Ing. Sebastian Schlüter Maintal vom April 2019, Stadt Ober-Ramstadt Städtebauliches Konzept "Odenwaldstraße Nord", planungsbüro für städtebau (Groß-Zimmern), Maßstab 1:500
- [2] Freiflächenplan Dipl.-Ing. Sebastian Schlüter Maintal vom März 2019, Stadt Ober-Ramstadt Städtebauliches Konzept "Odenwaldstraße Süd", planungsbüro für städtebau (Groß-Zimmern), Maßstab 1 : 500

3. <u>Untersuchungsumfang</u>

Zur Erkundung der Baugrundsituation wurden, im Zeitraum vom 03.09.2019 bis 04.09.2019 insgesamt 6 Kleinbohrungen DN 60/40 mm (Bohrungen 1 bis 6) abgeteuft. Diese sollten ursprünglich jeweils bis in eine Tiefe von 5,00 m unter OK bestehendes Gelände erfolgen, mussten aber baugrundbedingt, mit dem Antreffen unüberwindbarer Bohrhindernisse, teils bereits in einer Tiefe von nur 2,50 m vorzeitig angebrochen werden.

Die im Rahmen unserer Bohrungen angetroffenen Schichten wurden noch vor Ort gründungs-/bautechnisch nach DIN EN ISO 14688:2016-07 und DIN 18196: 2011-5 angesprochen und beurteilt. In Verbindung mit unseren regionalgeologischen Erfahrungen konnte, mit Hilfe der erhaltenen Bohrergebnisse und ohne die Durchführung bodenmechanischer Laborversuche, eine Abschätzung der bautechnisch zu berücksichtigenden Bodenkennwerte erfolgen.

Ergänzend zu den Bohrungen erfolgten, parallel zu diesen, zur Beurteilung der Baugrundfestigkeit, die Ausführung von 6 Rammsondierungen (DPH 1 bis DPH 6) mit der Schweren Rammsonde gemäß DIN EN ISO 22 476-2:2012-03. Auch missten in Teilen, innerhalb des örtlichen anstehenden Felshorizontes, in eine Tiefe von nur 3,10 m unter Gelände vorzeitig beendet werden.

Weiterhin erfolgte, zur Beurteilung der oberflächennahen Versickerungsfähigkeit der anstehenden Baugrundschichten, je zu entwickelndem Gebiet, am 05.09.2019 die Ausführung eines Bohrlochinfiltrationsversuchs in einem Bohrloch mit eingestellten Filterrohr.

Ferner erfolgten, unter Berücksichtigung der örtlichen Baugrundverhältnisse und der uns vorliegenden Gebäudedaten, Grundbruch- und Setzungsberechnungen nach Eurocode 7 (EC 7-1), mittels derer sich wesentliche Bemessungskennwerte zur tragwerksplanerischen Dimensionierung der von uns zu empfehlenden Gründungsvarianten ableiten lassen.

Seite 6

Im Rahmen der erforderlichen Erdarbeiten zur Errichtung der Wohnbebauung wird ferner Aushub anfallen, welcher einer schadlosen Verwertung zugeführt werden muss.

Im Hinblick auf die schadlose Verwertung dieser Aushubmassen erfolgte im Rahmen unserer Baugrunduntersuchung die Entnahme 25 horizontorientierter Bodenproben. Diese wurden, in unserem büroeigenen Labor, zu 4 bodenartspezifischen und gebietsorientierten Bodenmischproben mit den folgenden Bezeichnungen und Zuordnungen zusammengeführt und, zur Durchführung einer orientierenden abfallrechtlichen Deklarationsanalyse auf den Parameterumfang nach Anhang 1 Tabellen 1.1 bis 1.3 des Merkblattes "Entsorgung von Bauabfällen" (Baumerkblatt Stand 01.09.2018), der Wessling GmbH in Weiterstadt übergeben:

MP Boden 1 Bodenmischprobe der zu erwartenden L	_ehm- & Verwitte-
---	-------------------

rungslehmböden - Bereich Odenwaldstraße Süd

Messbereich unserer Bohrungen 1 bis 3

MP Boden 2 Bodenmischprobe der zu erwartenden Felsaushubmassen

Bereich Odenwaldstraße Süd

Messbereich unserer Bohrungen 1 bis 3

MP Boden 3 Bodenmischprobe der zu erwartenden Lehm- & Verwitte-

rungslehmböden - Bereich Odenwaldstraße Nord

Messbereich unserer Bohrungen 4 bis 6

MP Boden 4 Bodenmischprobe der zu erwartenden Felsaushubmassen

Bereich Odenwaldstraße Nord

Messbereich unserer Bohrungen 4 bis 6.

Die Lage unserer Aufschlusspunkte kann der Anlage 1 entnommen werden. Die Ergebnisse unserer Baugrundaufschlüsse werden, als Bohrprofile und als Rammdiagramme, mit unseren Anlagen 2 und 3 dokumentiert. Die Messprotokolle unserer Bohrlochinfiltrationsversuche können der Anlage 4 entnommen werden. Die Ergebnisse unserer exemplarischen Grundbruch- und Setzungsberechnungen sind, mit unserer Anlage 5, dem vorliegenden Bericht beigefügt.

Der Prüfbericht der Wessling GmbH, mit den Ergebnissen der erfolgten Deklarationsanalytik liegt, als Anlage 6, dem vorliegenden Bericht bei. Die an den orientierend untersuchten Bodenmischproben ermittelten Ergebnisse der Deklarationsanalytik werden, mit unseren Anlagen 7 bis 10, in tabellarischer Form den Zuordnungswerten der LAGA sowie der BBodSchV Anhang 2 Nr. 4.1 gegenübergestellt.

Seite 7

Zudem werden, mit unserer Anlage 11, auch die im Rahmen der Verwertung anfallender Aushubmassen erforderlichen Probenahmeprotokolle zur Verfügung gestellt.

4. <u>Baugrund und bodenmechanische Kennwerte</u>

4.1 Allgemeine Beschreibung der Schichtenfolge

Gemäß den Ergebnissen unserer Baugrunduntersuchung kann die Schichtenfolge im Bereich der geplanten Wohnbebauung zusammenfassen wie folgt beschrieben werden:

Im Bereich der untersuchten Grundstücke steht zunächst weitgehend eine örtlich entwickelte Oberbodenbildung in einer Dicke zwischen 0,25 m und 0,30 m aus tonigem Schluff an. Der Oberbodenbildung folgen, teils bis in Tiefen über 5,00 m unter OK Gelände, Lehm- und Verwitterungslehmschichten mit schwach kiesigen Beimengungen und Metamorphitgrus. Im Liegenden der Lehm- und Verwitterungslehmschichten konnte der anstehende Fels in Form eines blättrig ausgebildeten Metamorphites (Gneis) erbohrt werden. Dessen Tiefenlage variiert zwischen 0,90 m unter OK Gelände und über 5 m unter OK Gelände.

Nur im Messbereich unserer Bohrung 3 konnte, überdeckt von einer sich vor Ort entwickelten Grasnarbe in einer Dicke von ca. 0,05 m, flächig eine vornutzungsbedingte Auffüllung – Mächtigkeit 2,00 m – aus örtlichem Erdaushub mit Beimengungen an Natursteinbruch angetroffen werden.

Grundwasser steht, in Form zeitweise und nur lokal auftretendem Schichtwassers, in Tiefen zwischen 3,50 m und 4,50 m unter OK Gelände an.

4.1.1 Oberboden (Schicht 1)

In unseren Bohrungen konnte zunächst eine im Mittel 0,30 m dicke Oberbodenbildung angetroffen werden. Diese ist als durchwurzelter, toniger Schluffboden entwickelt. Die Oberbodenbildung lag, im Rahmen unserer Baugrunduntersuchung, in fester bis halbfester Konsistenz, d. h. in witterungsbedingt stark ausgetrockneter Zustandsform vor.

Seite 8

Im Hinblick auf mögliche Lastabtragungen ist der <u>Oberbodenbildung</u> eine <u>nicht ausreichende Tragfähigkeit</u> zu attestieren, wonach diese nicht geeignet ist, anfallende Bauwerkslasten ausreichend setzungsarm aufnehmen zu können. Die Oberbodenbildung ist demnach vollflächig innerhalb der jeweiligen Gründungsflächen mittels Abtrag zu entfernen und, sofern diese nicht ohnehin zur Herstellung der Gründungssohlen vollständig abgegraben werden muss, durch einen ausreichend tragfähigen Lieferboden zu ersetzen.

Aufgrund ihrer Bodenart ist die im Bereich des Baufensters anzutreffende Oberbodenbildung, bezüglich einer späteren Wiederverwertung zur Herstellung einer durchwurzelbaren Bodenschicht, das heißt auch zur Herstellung von Vegetationsschichten im Bereich geplanter Freiflächen, nach Ansicht des Unterzeichners als gut geeignet zu beurteilen. Der innerhalb der beiden zu entwickelnden Gebiete vorhandene <u>Oberboden</u> sollte demnach, <u>bereits zu Baubeginn</u>, vollflächig durch <u>Abschieben</u> und schonendes seitliches Zwischenlagern zunächst gesichert, und nach Abschluss aller Bautätigkeiten als solcher wieder flächig angedeckt werden.

Seine Dicke wird voraussichtlich ausreichen, innerhalb der verbleibenden Frei- und Vegetationsflächen, eine Mindestdicke von 0,30 m an durchwurzelbarem Oberboden sicherstellen zu können.

4.1.2 Auffüllungen (Schicht 2)

Nur im Bereich unserer Bohrung 3 konnten, bis in eine Tiefe von 2,00 unter OK Gelände, zunächst Auffüllungen aus Lehmschichten in halbfester Zustandsform mit geringen Beimengungen an Natursteinbruch erbohrt werden. Unsere parallel zur Bohrung 3 ausgeführte Rammsondierung DPH 3, musste in einer Tiefe von etwas über 4 m unter OK Auffüllung vorzeitig abgebrochen werden, wonach verbliebene Restanteile einer ehemals sich in diesem Grundstücksabschnitt befindlichen Bebauung, nicht gänzlich ausgeschlossen werden können.

Innerhalb der Auffüllungen konnten, bedingt durch ihre oberflächennahe Austrocknung und ihre unterschiedlichen Verdichtungszustände, unterschiedlich hohe Sondierwiderstände N₁₀ zwischen 0 und maximal 28 Schlägen ermittelt werden, die nicht ohne weiteres den Ergebnissen unserer Bohrung 3 zugeordnet werden können. Möglicherweise wurde unsere Rammsondierung DPH 3 daher im Bereich einer ehemals vorhandenen, landwirtschaftlich ausgerichteten Bebauung, z. B. einer rückverfüllten Jauchegrube, unsere Bohrung 3 hingegen unmittelbar neben einer solchen Bebauung angesetzt.

Seite 9

Daher ist nur den Auffüllungen außerhalb der ehemals vorhandenen, landwirtschaftlich ausgerichteten Bebauung eine mitteldichte bis dichte Lagerung zuzuordnen und gleichzeitig eine ausreichend hohe Tragfähigkeit zu attestieren.

Die mittels unserer <u>Rammsondierung DPH 3</u> festgestellten Sondierwiderstände belegen hingegen in Einzellagen, insbesondere in einem Tiefenabschnitt zwischen 1,60 m und 1,90 m unter OK Gelände, <u>deutliche Minderverdichtungen</u> die, unter Einwirkung der geplanten Gebäudelasten, zu <u>unkontrollierbaren Nachsetzungen</u> führen können. Dem unsererseits vermuteten Zusammenhang zwischen festgestellten Minderverdichtungen und einer zu vermutenden, ehemals vorhandenen Bebauung mit landwirtschaftlicher Ausrichtung, müsste demzufolge zu Baubeginn mittels Baggerschurf zwingend nachgegangen werden.

Den Auffüllungen im Messbereich unserer Bohrung 3 wird im Rahmen der auszuführenden Gründungsarbeiten demzufolge eine besondere Aufmerksamkeit zu widmen sein.

Die feinkörnig ausgebildeten Auffüllungen weisen extrem witterungsabhängige bautechnische Eigenschaften auf, da sie bereits bei geringer Wasserzufuhr zum vollständigen Verlust ihrer erdbautechnisch ohnehin bereits sehr ungünstigen Eigenschaften neigen. Die Wasser-Witterungsempfindlichkeit der Auffüllungen sollte, im Rahmen auszuführender Erdarbeiten, zwingend beachtet werden. Erdbauarbeiten innerhalb der Auffüllungen sollten daher sehr witterungsangepasst, beispielsweise nur in niederschlagsarmen Wetterperioden geplant und ausgeführt werden, sodass deren Aufweichen weitgehend vermieden wird. Dennoch durch äußere Witterungseinflüsse unterhalb möglicher Gründungsflächen ggf. aufgeweichte Bodenanteile sind zwingend vollständig zu entfernen und durch einen ausreichend tragfähigen Ersatzboden, etwa durch ein Frostschutzmaterial der Körnung 0/32 mm aus gebrochenem Natursteinmaterial oder eine recyclierte Gesteinskörnung (RC-Material) zu ersetzen.

4.1.3 Lehm- und Verwitterungslehmschichten (Schicht 3)

Unterhalb der Auffüllungen stehen, ansonsten außerhalb des aufgefüllten Grundstücksabschnittes im zu entwickelnden Gebiet "Süd" hingegen unmittelbar unterhalb der Oberbodenbildung, bis in Tiefen zwischen 0,90 m (Bohrung 1) und über 5 m (Bohrungen 2 bis 5) unter Gelände zunächst Lehm- und Verwitterungslehmschichten ist halbfester Zustandsform an die, unter Schichtwassereinfluss stehend, über die Tiefe rasch in eine weiche bis steife, teils sogar in eine breiige Konsistenz (Bohrung 2) wechseln.

Seite 10

Die Lehm- und Verwitterungslehmschichten weisen in Teilen schwach feinkiesige Beimengungen, geprägt durch den in Teilen nur in geringer Tiefenlage anzutreffenden Felshorizont, in weiten Bereichen aber auch eine deutliche Metamorphitgrusnebenkomponente auf.

Dementsprechend konnten innerhalb der **Lehm- und Verwitterungslehmschichten**, über weite Bereiche stark abgeschwächte Sondierwiderstände N₁₀ von nur 1 und 2 Schlägen ermittelt werden. Den Lehm- und Verwitterungslehmschichten ist demnach weitgehend nur eine lockere Lagerung zuzuordnen. Im Hinblick auf mögliche Lastabtragungen ist den Lehmund Verwitterungslehmschichten daher nur eine **abgeminderte**, **aber dennoch ausreichend hohe Tragfähigkeit** zu attestieren die geeignet ist, die zu erwartenden Bauwerkslasten ausreichend setzungsarm aufnehmen zu können.

Nur im äußersten Süden des zu entwickelnden Gebietes "Nord", sowie im Norden des zu entwickelnden Gebietes "Süd", ist den dortigen Lehm- und Verwitterungslehmschichten, denen in diesen Gebietsarealen in nur geringer Tiefe unvermittelt der anstehende Felshorizont folgt, eine bodenartspezifische und normaltypische Tragfähigkeit zuzuordnen.

Den Lehm- und Verwitterungslehmschichten wird im Rahmen der auszuführenden Gründungsarbeiten voraussichtlich in allen Gründungsbereichen eine entscheidende Bedeutung zukommen. Diese werden, in beiden zu entwickelnden Gebieten, nahezu vollflächig den unmittelbaren Lastabtragungshorizont stellen. Nur im Norden des zu entwickelnden Gebietes "Süd", wird die Gründung der geplanten Gebäude 1 und 2 unter Umständen auch innerhalb des anstehenden Felshorizontes auszubilden sein.

Auch die Lehm- und Verwitterungslehmschichten weisen stark witterungsabhängige bautechnische Eigenschaften auf, da auch sie bereits bei geringer Wasserzufuhr zu starkem Tragfähigkeitsverlust neigen. Die Wasser-/Witterungsempfindlichkeit der Lehm- und Verwitterungslehmschichten ist im Rahmen auszuführender Erdarbeiten zwingend zu beachten. Erdbauarbeiten innerhalb der Lehm- und Verwitterungslehmschichten sollten daher sehr witterungsangepasst, beispielsweise nur in niederschlagsarmen Wetterperioden geplant und ausgeführt werden, sodass dessen Aufweichen weitgehend vermieden wird. Dennoch durch äußere Witterungseinflüsse unterhalb der Gründungsflächen ggf. aufgeweichte Bodenanteile sind zwingend vollständig zu entfernen und durch einen ausreichend tragfähigen Ersatzboden, etwa durch ein Frostschutzmaterial der Körnung 0/32 mm aus gebrochenem Natursteinmaterial, zu ersetzen.

Seite 11

4.1.4 Felshorizont, Felszersatzzone (Schicht 4)

Im Liegenden der Lehm- und Verwitterungslehmschichten wurde, in unseren Bohrungen 1 und 6, zunächst als Felszersatzzone anstehend, in einer Tiefe von bereits 0,90 m (Bohrung 1) und 2,40 m (Bohrung 6) unter OK Gelände, ein nahezu vollständig zersetzter Metamorphit (Gneis) in blättriger und stark klüftiger Ausbildung erbohrt. Dieser geht, über die Tiefe betrachtet, rasch in die eigentliche Felszone aus verwittertem Metamorphit in blättrig-klüftiger Ausbildung und erhöhter Festigkeit über.

In der Örtlichkeit deutet sich die relative Hochlage des Felshorizontes, auch optisch gut erkennbar, in einer ansteigenden Morphologie im äußersten Süden des zu entwickelnden Gebietes "Nord", sowie im Norden des zu entwickelnden Gebietes "Süd" an.

Der Felshorizont stellte im Rahmen unserer Baugrunduntersuchung ein nicht zu durchteufendes Bohr- und Rammhindernis dar. Unsere Baugrundaufschlüsse vom 03.09.2019 und 04.09.2019 mussten daher innerhalb des beginnenden Felshorizontes (Bohrung 1 / DPH 1 / Bohrung 6 / DPH 6) vorzeitig abgebrochen werden.

Dem Felshorizont wird im Rahmen der Gründungsdimensionierung, in weiten Arealen der beiden zu entwickelnden Gebiete, eine mitentscheidende Bedeutung zukommen. Nur im Norden des zu entwickelnden Gebietes "Süd", könnte dieser, je nach Höhenlage der dort vorgesehenen Gründungsebenen, unter Umständen auch den unmittelbaren Lastabtragungshorizont stellen. Dem Felshorizont ist in allen Gründungsebenen eine ausreichend hohe bis hohe Tragfähigkeit zuzuordnen.

Das vollständig zersetzte Metamorphitgestein innerhalb der Felszersatzzone weist, als veränderlich festes Gestein, bodenähnliche bautechnische Eigenschaften auf. Auch dieses neigt, unter Wasserzufuhr, daher zu starkem Tragfähigkeitsverlust. Auch die Wasser-/Witterungsempfindlichkeit der Felszersatzzone ist im Rahmen auszuführender Erdarbeiten daher zwingend zu beachten. Auch die Erdbauarbeiten innerhalb der Felszersatzzone sollten dementsprechend sehr witterungsangepasst ausgeführt werden, sodass deren Aufweichen weitgehend vermieden wird.

Erdbautechnisch wird dem Felshorizont zudem insofern besondere Aufmerksamkeit zu widmen sein, da dieser, festigkeitsbedingt, als Felsaushub einer gesonderten Abrechnung bedarf.

4.2 Grundwasserverhältnisse

Im Bereich der beiden zu entwickelnden Gebiete konnte, innerhalb der Lehm- und Verwitterungslehmschichten, im Auslaufbereich der im Norden und Süden befindlichen morphologischen Erhebungen, Grundwasser in Form von lokal auftretendem Schichtwasser angetroffen werden. Im Zuge unserer Bohrarbeiten spiegelte sich das Schichtwasser in folgenden Bohrtiefen ein:

Tabelle 1: erbohrte Grundwasserstände

	erbohrte Grundwasserstände			
Messstelle	Wasserstand erbohrt [m unter OK Gelände]	Wasserstand Anstieg nach Bohrende [m unter OK Gelände]		
Bohrung 1	kein Grundwasser erbohrt	keine Wasseranstieg nach Bohrende		
Bohrung 2	3,50	keine Wasseranstieg nach Bohrende		
Bohrung 3	kein Grundwasser erbohrt	keine Wasseranstieg nach Bohrende		
Bohrung 4	4,50	keine Wasseranstieg nach Bohrende		
Bohrung 5	kein Grundwasser erbohrt	keine Wasseranstieg nach Bohrende		
Bohrung 6	kein Grundwasser erbohrt	keine Wasseranstieg nach Bohrende		

Ferner stehen, in gründungsrelevanter Tiefe, mit den Lehm- und Verwitterungslehmschichten und dem im Liegenden folgenden Felshorizont Baugrundschichten mit geringer Wasserdurchlässigkeit an, deren Größenordnung mit k_f < 1E-08 m/s bis k_f < 1E-06 m/s angenommen werden muss, wie die Ergebnisse unserer Bohrlochinfiltrationsversuche ausweisen.

Aufgrund der geringen Wasserdurchlässigkeit der Baugrundschichten ist, unter zusätzlicher Beachtung der jahreszeitlich variierenden Niederschlagsintensitäten, gemäß DIN 18533-1: 2017-07 die Gefahr von Staunässebildungen innerhalb der herzustellenden Gründungsebenen demnach nicht gänzlich auszuschließen.

Seite 13

Vor diesem Hintergrund ist, gemäß Abschnitt 5.1.3.2 DIN 18533-1:2017-07, folglich ein Grundwasserbemessungsstand wie folgt anzunehmen:

Grundwasserbemessungsstand = OK Gelände.

In Bezug auf das zu planende **Abdichtungskonzept** der Wohnbebauung sind demnach erhöhte Vorgaben zum Schutz der erdberührenden Gebäudeteile gemäß Abschnitt 5.1.3.2 – W2.1-E mäßige Einwirkung von drückendem Wasser – nach DIN 18533-1:2017-07, bzw. als Sonderkonstruktion in WU-Beton nach Abs. 8 der DAfStb-Richtlinie (Stand 2003) zu berücksichtigen. Näheres hierzu wird unter Ziffer 5.2 erläutert.

4.3 Bodenmechanische Kennwerte / Bodenklassen und Homogenbereiche

Erdstatische Berechnungen können, basierend auf Erfahrungswerten und Literaturangaben, mit den in nachfolgender Tabelle dokumentierten, kalkulierten mittleren Bodenkennwerten durchgeführt werden (konservative Annahmen).

Tabelle 2: bodenmechanische Kennwerte und Bodenklassifikationen

Schicht Nr. Bodenart Tiefenlage	Wichte feucht cal γ _k kN/m³	Reibungs- winkel cal φ' _k Grad	Kohäsion cal <i>c'_k</i> kN/m²	Steife- modul cal <i>E</i> _{S,k}	Frostem- pfindlich- keitsklasse nach ZTVE-StB	Bodengruppe nach DIN 18196
Schicht 1 Oberboden bis Ø 0,30 m Tiefe	14-16	22-24	0	0,5-1	F3	ОН
Schicht 2 Auffüllungen bis Ø 2,00 m Tiefe, aber nur in Bohrung 3	19-20	27,5-30	0	5-12	F3	UL und TL
Schicht 2 Lehm-/ Verwitterungs- lehm ab Ø 0,30 m Tiefe, örtlich auch nur bis Ø 0,90 m Tiefe	19-20	27,5-30	0-2	3-15	F3	UL und TL
Schicht 4 Fels, Felszersatz- und Felszone, blättriger Metamorphit in morphologischen Hochlagen teils bereits ab Ø 0,90 m Tiefe	21-26	37,5-1	25-80	25-120	F1 bis F3	-

Seite 14

Weiterhin wird im Folgenden eine Einstufung nach **DIN 18300:2015-08** vorgenommen gemäß der, die in der Vergangenheit üblichen Klassifizierungen der Aushubböden in Bodenund Felsklassen, durch sogenannte Homogenbereiche abgelöst werden.

Ein Homogenbereich ist ein räumlich begrenzter Bereich aus einer oder mehreren Bodenund Felsschichten nach DIN 4020 oder DIN EN 1997-2, dessen bautechnische Eigenschaften eine definierte Streuung aufweisen und der sich von den Eigenschaften der abgegrenzten Bereiche abhebt. Bei der Einteilung in Homogenbereiche sind demnach u. a. auch umweltrelevante Inhaltsstoffe zu beachten.

Nach **DIN 18300:2015-08** sind im Rahmen der auszuführenden Erdbauarbeiten, abhängig von der Bodenart und ihrer Lösbarkeit, **drei Homogenbereiche (O₁, B₁ und X₁)** zu unterscheiden, die sich wie folgt untergliedern lassen:

Homogenbereich O₁ – durchwurzelter, schluffig-toniger Oberboden
Ø Dicke in beiden Gebieten ca. 0,30 m
Einbauklasse Z 0 / Z 0* gemäß dem Hessischen
Baumerkblatt

Homogenbereich B₁ – Lehm- und Verwitterungslehmschichten mit feinkiesigen Beimengungen und Metamorphitgrus sowie lehmige Auffüllungen mit Natursteinbruch aus dem Bereich unserer Bohrung 3 ab Ø 0,30 m Tiefe, örtlich auch nur bis Ø 0,90 m Tiefe Einbauklasse Z 0 / Z 0* gemäß dem Hessischen

Baumerkblatt

Homogenbereich X₁ – anstehender Felshorizont aus Metamorphitgestein Fels, Felszersatz- und Felszone, blättriger Metamorphit, in morphologischen Hochlagen teils bereits ab Ø 0,90 m Tiefe, ansonsten ab Tiefen von über 5 m unter Gelände

Einbauklasse Z 0 / Z 0* gemäß dem Hessischen Baumerkblatt

Eine bodenartspezifische Aufgliederung des Homogenbereichs B₁ in aufgefüllte und nicht aufgefüllte Böden wäre, aufgrund ihrer charakteristisch vergleichbaren Bodeneigenschaften, aus gutachtlicher Sicht nicht zielführend.

In Bezug auf die genannten Homogenbereiche nach DIN 18300:2015-08 sind, unter Zugrundelegung der geotechnischen Kategorie GK 1 der zu projektierten Erdarbeiten gemäß DIN 4020:2010-12, die in Tabelle 3 aufgeführten Kennwertbandbreiten zu beachten.

Tabelle 3: Kennwertbandbreiten zu berücksichtigender Homogenbereiche

Homogenbereich	O ₁	B ₁	X ₁
Schichten Bodenart Tiefenabschnitt	Schicht 1 durchwurzelter, schluffig- toniger Oberboden bis Ø 0,30 m Tiefe	Schichten 2 und 3 Lehm- und Verwitterungs- lehm-schichten mit feinkiesigen Beimengun- gen und Metamorphitgrus sowie lehmige Auffüllungen mit Natursteinbruch aus dem Bereich unserer Bohrung 3 ab Ø 0,30 m Tiefe, örtlich auch nur bis Ø 0,90 m Tiefe	Schicht 4 Fels, Felszersatz- und Felszone, blättriger Metamorphit, in morphologischen Hochlagen teils bereits ab Ø 0,90 m Tiefe, ansonsten ab Tiefen von über 5 m unter Gelände
Anteil an Steinen und Blöcken	0 %	0 bis 10 %	0 % bis 50 %
Anteil großer Blöcke	0 %	0 %	50 bis 100 %
Lagerungsdichte	locker	locker bis mitteldicht	aufgelockert bis dicht und kompakt
Konsistenz	trocken, halbfest bis fest	steif bis fest	zersetzt, stark klüftig, blättrig
Wichte	14-16 Mg/m³	19-20 Mg/m³	21-26 Mg/m³
Bodengruppe nach DIN 18196	ОН	UL und TL	-

Im **Homogenbereich X**₁ ist, bei veränderlich fester Ausbildung innerhalb der Felszersatzzone und schiefrig-blättriger Ausbildung innerhalb der verwitterten Felszone, eine **Druckfestigkeit zwischen 10 N/mm² und 150 N/mm²**, mit <u>wechselnder Trennflächenausrichtung</u> zu erwarten.

Seite 16

5. <u>Baugrundbeurteilung und gründungstechnische Empfehlungen</u>

5.1 Allgemeine Hinweise zur Gründung der Wohnbebauung

Alle Gründungen im Bereich der geplanten Wohnbebauung sind grundsätzlich frostfrei, d. h. mit einer Mindesteinbindetiefe von 0,80 m unter geplantem Gelände, im Schutz dementsprechend tief reichender Beton-Frostschürzen, oder aber auf einer ausreichend dicken, frostsicheren Unterlage auszuführen.

Im Bereich der beiden zu entwickelnden Gebiete stehen, unter Beachtung der zu erwartenden Gebäudelasten, mit den Lehm- und Verwitterungslehmschichten und dem im Liegenden folgenden Felshorizont, breitflächig zunächst abgemindert tragfähige, zur Tiefe hin hingegen gut bis sehr gut tragfähige Baugrundverhältnisse an. Die oberhalb der genannten Schichten anstehende Oberbodenbildung ist hingegen nicht geeignet, die aus den Bauwerken resultierenden Lasten ausreichend setzungsarm aufnehmen zu können. Diese muss innerhalb der einzelnen Gründungsflächen vollständig abgetragen und durch einen ausreichend tragfähigen Lieferboden ersetzt werden.

Unter ausschließlicher Berücksichtigung der Baugrundtragfähigkeit, würde demnach eine Gründung der geplanten Wohnbebauung über Streifenfundamente, aber auch mittels elastisch gebetteter Bodenplatten innerhalb der unterschiedlichen Gründungsebenen in Frage kommen.

Es ist jedoch zu beachten, dass innerhalb der herzustellenden Gründungsebenen ausschließlich stark feinkörnig ausgebildete Baugrundschichten anstehen. Deren Tragfähigkeit wird, durch Witterungseinflüsse und hierdurch bedingter Wassergehaltsvariationen, zumindest in Gründungsrandbereichen und oberflächennah, im Jahresverlauf stärkeren Schwankungen unterlegen sein.

Insbesondere unter Beachtung letztgenannten Sachverhaltes ist, aus gutachterlicher Sicht, eine <u>Gründung der Wohnbebauung mittels elastisch gebetteter Bodenplatten klar zu favorisieren</u>. Von einer Gründung der geplanten Wohnbebauung mittels Streifenfundamenten wird, aus vorgenannten Gründen, abgeraten.

Durch eine Gründung der geplanten Wohnbebauung über lastabtragende Bodenplatten können unterschiedlich hohe Lasteinwirkungen innerhalb der einzelnen Gründungsflächen bauwerksverträglicher aufgenommen und über die Fläche harmonischer verteilt werden.

Die im Rahmen vorgenannter Gründungsvariante zu beachtenden Sachverhalte in Bezug auf die Wechselwirkungen zwischen Baugrund und Bodenplatten, werden im Folgenden näher betrachtet.

Seite 17

5.1.1 Gründung der Wohnbebauung mittels elastisch gebetteter Bodenplatten

Durch eine Gründung der geplanten Wohnbebauung mittels elastisch gebetteter Bodenplatten können unterschiedlich hohe Lasteinwirkungen innerhalb der Gründungsfläche sehr
gut aufgenommen und über die Fläche harmonisch verteilt werden. Dies nicht zuletzt auch
vor dem Hintergrund der erhöhten Witterungsempfindlichkeit, aller innerhalb der Gründungssohlen anzutreffenden Baugrundschichten. Weiterhin sind einer Plattengründung Vorteile im Hinblick auf die zu empfehlende Abdichtungskonzeption zuzuschreiben.

Unterhalb der, in einer **Mindestdicke von 0,25 m** zu empfehlenden **Plattengründungen** ist, zur Sicherstellung einer ausreichend tragfähigen und frostsicheren Gründungssohle, ein **mindestens 0,55 m dicker Tragschicht-Unterbau** zu empfehlen. Dieser ist, sofern aufgrund der bestehenden Geländeneigung zusätzliche Geländemodellierungen zur Schaffung ebener Aufstandsflächen erforderlich werden, talseitig in der erforderlichen Dicke zu erhöhen.

Zur Herstellung des **Tragschicht-Unterbaus** sollten Gesteinskörnungen aus gebrochenem Naturstein- oder Recyclingmaterial) verwendet werden, welche einen Feinkornanteil (Kornanteil < 0,063 mm) von 5 Masse-% nicht überschreiten dürfen. Es empfiehlt sich daher, ein gemäß TL G SoB-StB 04/07 güteüberwachtes Frostschutzmaterial zu verwenden, welches den Anforderungen der ZTV SoB-StB 04/07 genügt.

Der Einbau des Tragschicht-Unterbaus, aber auch der ggf. aufgrund der vorherrschenden Geländeneigung zusätzlichen Geländemodellierungen, muss vollflächig auf einen Verdichtungsgrad von \geq 100 % D_{Pr} erfolgen. Hierzu sind entsprechende Nachweise mittels Leichter Fallgewichtsversuche gemäß TP BF-StB Teil B 8.3 zu empfehlen, die durch unser Büro nach Abschluss der Verdichtungsarbeiten im Rahmen gesondert zu vereinbarender Ortstermine erbracht werden sollten. Auf dem fertig hergestellten Tragschicht-Unterbau erachten wir im Rahmen dieser Nachweise einen Verformungsmodul E_{vd} von \geq 40 MN/m², bei gleichzeitig höchstzulässiger Variation der Setzungseinzelmesswerte Δs von 0,02 mm für erforderlich.

Zur Erzielung dieser Tragfähigkeits- und Verdichtungsanforderung ist auf einen ausreichend hohen Einbauwassergehalt des einzubauenden Tragschichtmaterials zu achten.

Des Weiteren sollten der Tragschicht-Unterbau, zur ausreichenden Aufnahme der Kantenpressungen, unter Berücksichtigung eines Lastausbreitungswinkels von 45°, breiter als die projektierte Gründungsfläche hergestellt werden.

 $Projekt-Nr.: B \ 19-1328-1, \ Objekt \ Modaublick \ GmbH \ \& \ Co. \ KG - Ober-Ramstadt - Wohnbebauung, \ Odenwaldstraße \ S + N \ Angelen \ Ang$

Seite 18

Lastannahmen zum Bauvorhaben sind uns nicht bekannt. Ausgehend von einem mittleren Sohldruckwiderstand zwischen 30 kN/m² und 80 kN/m² im Bereich möglicher Plattengründungen – Kantenpressungen bis 180 kN/m² könnten gegebenenfalls auftreten –, ist zu deren Dimensionierung zunächst von folgenden mittleren Bemessungskennwerten auf den empfohlenen Tragschicht-Unterbauten, unter besonderer Berücksichtigung der örtlich unterschiedlichen Baugrundverhältnisse auszugehen:

Gründung innerhalb des Gebietes "Nord" – Areal der geplanten Erweiterung

Bettungsmodul

 $k_{s,k} = 12 \text{ MN/m}^3$

Steifemodul

 $E_{sk} = 20 \text{ MN/m}^2$

Gründung innerhalb des Gebietes "Nord" – Areal der Gebäude 1-12

Bettungsmodul

 $k_{s,k} = 4 \text{ MN/m}^3$

Steifemodul

 $E_{s,k} = 10 \text{ MN/m}^2$

Gründung innerhalb des Gebietes "Süd" – Areal der Gebäude 1-4

Bettungsmodul

 $k_{s,k} = 20 \text{ MN/m}^3$

Steifemodul

 $E_{sk} = 30 \text{ MN/m}^2$

Gründung innerhalb des Gebietes "Süd" – Areal der Gebäude 5-10

Bettungsmodul

 $k_{s,k} = 4 \text{ MN/m}^3$

Steifemodul

 $E_{s,k} = 10 \text{ MN/m}^2$

Gründung innerhalb des Gebietes "Süd" – Areal der Gebäude 11 und 12

Bettungsmodul

 $k_{s,k} = 7 \text{ MN/m}^3$

Steifemodul

 $E_{s,k} = 12 \text{ MN/m}^2$.

Die Angabe eines Bemessungswertes des Sohldruckwiderstandes $\sigma_{R,d}$ ist nicht erforderlich, da die Grundbruchsicherheit im Rahmen der empfohlenen Plattengründungen sicher gewährleistet sein wird. Als Mindestwerte können jedoch, unter Hinnahme einer als zulässig zu beurteilenden Gesamtsetzung von maximal 4 cm, im Rahmen der empfohlenen Plattengründungen folgende Bemessungswerte des Sohldruckwiderstandes $\sigma_{R,d}$ vorausgesetzt werden:

Seite 19

Gründung innerhalb des Gebietes "Nord" – Areal der geplanten Erweiterung Bemessungswert des Sohldruckwiderstandes $\sigma_{R,d}$ = 440 kN/m²

Gründung innerhalb des Gebietes "Nord" – Areal der Gebäude 1-12 Bemessungswert des Sohldruckwiderstandes $\sigma_{R,d}$ = 135 kN/m².

Projekt-Nr.: B 19-1328-1, Objekt Modaublick GmbH & Co. KG - Ober-Ramstadt - Wohnbebauung, Odenwaldstraße S + N

Gründung innerhalb des Gebietes "Süd" – Areal der Gebäude 1-4 Bemessungswert des Sohldruckwiderstandes $\sigma_{R,d}$ = 720 kN/m²

Gründung innerhalb des Gebietes "Süd" – Areal der Gebäude 5-10 Bemessungswert des Sohldruckwiderstandes $\sigma_{R,d}$ = 170 kN/m².

Gründung innerhalb des Gebietes "Süd" – Areal der Gebäude 11 und 12 Bemessungswert des Sohldruckwiderstandes $\sigma_{R,d}$ = 280 kN/m².

Diese Bemessungswerte können, wie auch die Bettungs- und Steifemodule, im Bereich der Plattenränder um den Faktor 1,5 erhöht werden.

Zur Gewährleistung einer ausreichend ebenen Fläche im Auflagerbereich der Bodenplattenbewehrung, zum Abstellen der Abstandshalter und Sicherstellung einer ausreichenden Betondeckung im Sohlbereich der Gründungsplatten, ist unmittelbar nach Herstellung des Tragschicht-Unterbaus der Einbau einer etwa 3-5 cm dicken Sauberkeitsschicht aus Magerbeton der Festigkeitsklasse C12/15 zu empfehlen. Alternativ zu einer Sauberkeitsschicht aus Magerbeton kann, zur Sicherstellung einer ausreichend ebenen Basis, auf dem Tragschicht-Unterbau auch eine Doppellage Baufolie (Mindestdicke 0,40 mm) mit einer Mindestüberlappung von 30 cm verlegt werden, auf der die Abstandshalter der Bodenplattenbewehrungen aufgelagert werden können. Sofern unterhalb der Bodenplatte zusätzlich eine Perimeterdämmung aus Styrodurplatten o. ä. erforderlich wird, kann auch diese, die zum Abstellen der Abstandshalter erforderliche Ebenheit sicherstellen.

Die Frostsicherheit solcher Plattengründungen ist, unter Beachtung der unsererseits empfohlenen Materialqualität und Dicke in Bezug auf den empfohlenen Tragschicht-Unterbau, sicher gewährleistet.

Seite 20

Der Ansatz unserer mit Anlage 5 aufgelisteten Bemessungswerte setzt eine ungestörte Gründungsebene voraus. Unvermeidbare, aushubbedingte Auflockerungen innerhalb der oberflächennahen Gründungsebene sind daher zwingend mittels geeigneten Verdichtungsgeräts zu egalisieren.

Die von uns mit den Anlage 5 dokumentierten Grundbruchwiderstände $R_{n,d}$, gelten ferner nur für ein Verhältnis von ständigen zu veränderlichen Lasten von 50/50, unter Berücksichtigung eines Gesamtteilsicherheitsbeiwertes $\gamma_{G,Q}$, welcher sich aus den einzelnen Lastanteilen mit ihren zugehörigen Teilsicherheitsbeiwerten wie folgt ergibt:

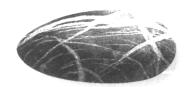
$$R_{n,d} = (\gamma_G \cdot (1 - p_G) + \gamma_Q \cdot p_Q) \cdot \gamma_{R,v} = 1,35 \cdot (1 - p_G) + 1,50 \cdot p_Q) \cdot 1,40$$

 $\gamma_{\rm G}$ = Teilsicherheitsbeiwert ständige Lasten

 γ_{Q} = Teilsicherheitsbeiwert veränderliche Lasten

 $\gamma_{R,v}$ = Teilsicherheitsbeiwert Grundbruch

 p_G = Anteil ständiger Lasten


 p_Q = Anteil veränderlicher Lasten.

Unsere Berechnungen setzen ferner einen einheitlich tragfähigen Baugrund und gleichmäßig verteilte charakteristische Bodenpressungen $\sigma_{E,k}$ voraus, wie sie im Bereich der projektierten Wohnbebauung aufgrund ihrer Bauart als gegeben anzunehmen sind. Sollten diese Voraussetzungen gegebenenfalls, entgegen unseren Annahmen, bauwerksabhängig nicht erfüllt sein, ist Rücksprache mit unserem Büro zu halten.

5.2 Bauwerksabdichtung

Aufgrund der geringen Wasserdurchlässigkeit der Baugrundschichten ist, gemäß DIN 18533-1:2017-07 und unter zusätzlicher Beachtung der jahreszeitlich variierenden Niederschlagsintensitäten, die Gefahr von Staunässebildungen innerhalb der herzustellenden Gründungsebenen nicht gänzlich auszuschließen. Aufgrund der geringen Wasserdurchlässigkeit der oberflächennah anstehenden Schwemmlehmschichten ist, gemäß Abschnitt 5.1.3.2 DIN 18533-1:2017-07, folglich ein Grundwasserbemessungsstand wie folgt anzunehmen:

Grundwasserbemessungsstand = OK Gelände (OK Tragschicht-Unterbau).

Seite 21

In Bezug auf die zu wählende Abdichtungskonzeption der erdberührenden Gebäudeabschnitte sind in Zukunft auch häufiger zu erwartende Starkregenereignisse zu berücksichtigen, im Zuge derer die Böden auch oberflächennah anfallendes Niederschlagswasser mittels Versickerung nicht schnell genug schadlos abführen können. Hierdurch bedingt wird es, auch bedingt durch die örtliche Morphologie, zu erhöhten Oberflächenabflüssen kommen, die auch in nicht unterkellerten aber erdberührenden Bodenplattenbereichen, eine temporäre Beanspruchung durch Stauwasser zur Folge haben werden.

In Bezug auf das zu planende <u>Abdichtungskonzept</u> der Wohnbebauung sind folglich erhöhte Vorgaben zum Schutz der erdberührenden Gebäudeteile <u>gemäß Abschnitt 5.1.3.2 – W2.1-E mäßige Einwirkung von drückendem Wasser – nach DIN 18533-1:2017-07</u>, bzw. als Sonderkonstruktion in WU-Beton nach Abs. 8 der DAfStb-Richtlinie (Stand 2003) zu berücksichtigen.

5.3 Baugrube und Rückverfüllung der Arbeitsräume

Aufgrund der oberflächennah projektierten Gründungsebenen – im Bereich der Wohnbebauung ist nach den uns vorliegenden Informationen keine Unterkellerung vorgesehen – werden das Anlegen von Baugruben und damit verbundene Arbeitsraumrückverfüllungen nicht erforderlich. Weitergehende Aussagen und Empfehlungen hierzu erübrigen sich daher an dieser Stelle.

5.4 Geodynamik

Gemäß Eurocode 8 – DIN EN 1998-1/NA:2011-01 – ist das Gebiet im Bereich des Bauvorhabens folgender Erdbebenzone zuzuordnen:

Zone 1.

Zusätzlich zur Erdbebenzone muss zudem der geologische Untergrund (> 20 m Tiefe) und der direkte Baugrund (< 20 m Tiefe) mitberücksichtigt werden, die gemäß den örtlichen Verhältnissen wie folgt zuzuordnen sind:

Seite 22

Untergrundklasse R - Gebiete mit felsartigem Gesteinsuntergrund

Baugrundklasse A - Unverwitterte (bergfrische) Festgesteine mit hoher Festigkeit.

5.5 Versickerungsfähigkeit der oberflächennahen Baugrundschichten

Voraussetzung für die Versickerung von Niederschlagswasser ist eine ausreichende Durchlässigkeit (hydraulische Leitfähigkeit) der anstehenden Baugrundschichten. Die Wasserdurchlässigkeit des Baugrundes im Bereich der beiden zu entwickelnden Gebiete wird oberflächennah von gering bis sehr gering wasserdurchlässigen Böden mit Wasserdurchlässigkeitsbeiwerten k_f zwischen 1E-08 m/s und 1E-06 m/s geprägt.

Im Hinblick auf mögliche, im Osten der Projektareale gegebenenfalls anzuordnende Versickerungsflächen, erfolgte in den dortigen Bereichen gezielt die Durchführung von Bohrlochinfiltrationsversuchen. Diese mit Bohr-Inf 1 und Bohr-Inf 2 bezeichneten Prüfungen ergaben, für die anstehenden Baugrundschichten bis in eine Tiefe von 1,00 m unter Gelände, folgende Wasserdurchlässigkeitsbeiwerte:

Bohr-Inf 1 – k_f -Wert \approx 3,0E-08 m/s

Bohr-Inf 2 – k_f -Wert \approx 6,0E-08 m/s.

Für Versickerungsanlagen kommen, gemäß dem Arbeitsblatt DWA-A 138 (Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser) jedoch nur Böden in Frage, deren Wasserdurchlässigkeit im Bereich von $k_f = 1E-03$ m/s bis 1E-06 m/s liegt.

Demnach stehen, mit einem mittleren **k**_f-**Wert von ca. 4,0E-08 m/s**, innerhalb der beiden Projektareale nur <u>nahezu wasserundurchlässige Baugrundschichten</u> zur Versickerung von Niederschlagswasser zur Verfügung. Vor diesem Hintergrund ist, aus gutachterlicher Sicht, in beiden Projektarealen von einer Versickerung von Niederschlagswasser abzuraten. Demnach sollten Maßnahmen zur Verminderung von Versiegelungen, beispielsweise Dachbegrünungen, oder aber ein erhöhter Anteil an Grünflächen mit oberflächennahem Rückhaltepotential in den Fokus rücken.

Seite 23

Zudem könnten lokale Rückhalte- und Regenwassernutzungseinrichtungen, beispielsweise eine grundstücksbezogene, dezentrale Zwischenspeicherung des über Dachflächen anfallenden Niederschlagswassers in Regentonnen oder Zisternen, in nicht unerheblichem Maße zur Verringerung entstehender Oberflächenabflussspitzen beitragen.

6. <u>Abfallrechtliche Deklaration anfallender Erdaushubmassen</u>

Im Rahmen der Verwertung von Erdaushub sind zunächst grundsätzlich vier verschiedene Verwertungswege zu unterscheiden:

- Verwertungen in technischen Bauwerken
- Verwertungen in bodenähnlichen Anwendungen (Verfüllung von Abgrabungen und Senken, Verwertung im Landschaftsbau außerhalb technischer Bauwerke)
- Verwertungen nach BBodSchV zur Herstellung einer durchwurzelbaren Bodenschicht, oder zur Auf-/Einbringung in eine durchwurzelbare Boenschicht
- Deponiebautechnische Verwertungsmaßnahmen nach DepV (Stand 02.05.2013).

Für die **Verwertung** von mineralischen Abfällen **in technischen Bauwerken** (z. B. Straßenund Wegebau, straßenbegleitende Erdbaumaßnahmen etc.) gelten im Bundesland Hessen die Anforderungen des **Merkblattes "Entsorgung von Bauabfällen"** (Baumerkblatt Stand 01.09.2018). Dieses legt anhand von Zuordnungswerten (Z-Werte), in Abhängigkeit vom Schadstoffgehalt eines Abfalls sogenannte Einbauklassen (0 / 0* / 1.1 / Z1.2 und 2) fest, anhand derer sich mögliche Einschränkungen hinsichtlich der weiteren Verwertung des Abfalls ergeben können.

Verfüllungen unterhalb durchwurzelbarer Bodenschichten, sogenannte bodenähnliche Anwendungen, werden hingegen auf der Grundlage der "Richtlinie für die Verwertung von Bodenmaterial, Bauschutt und Straßenaufbruch in Tagebauen und im Rahmen sonstiger Abgrabungen" (Stand 2014), in Verbindung mit den Vorgaben des hessischen Baumerkblattes beurteilt.

Seite 24

Eine Verwertung mineralischer Abfälle innerhalb durchwurzelbarer Bodenschichten wird hingegen durch die Anforderungen des §12 der Bundes - Bodenschutz- und Altlastenverordnung (BBodSchV) geregelt. Dabei sind zusätzlich die bodenartspezifisch vorgegebenen Vorsorgewerte nach § 9 Abs.1 der BBodSchV einzuhalten, hinsichtlich derer die Schadlosigkeit einer Verwertung zu beurteilen ist. Weiterhin sind die Vorgaben der "Richtlinie für die Verwertung von Bodenmaterial, Bauschutt und Straßenaufbruch in Tagebauen und im Rahmen sonstiger Abgrabungen", Stand 2014 (Hessische Verfüllrichtlinie) zu beachten.

Deponiebautechnische Verwertungsmaßnahmen sind hingegen nach der Verordnung über Deponien und Langzeitlager - **Deponieverordnung** (DepV - Stand 02.05.2013) zu beurteilen, in der in Anhang 3 Tabelle 2, deponiespezifische Zuordnungswerte für die Deponieklassen DK 0 bis DK III, sowie für Rekultivierungsschichten, über die Zulässigkeit einer Verwertung entscheiden.

Demnach ist im Rahmen der Verwertung anfallender Aushubmassen außerhalb der geplanten Wohnbebauung zunächst grundsätzlich zu prüfen, welcher der vier o. g. Verwertungswege eingeschlagen werden soll, um dann in einem weiteren Schritt über die Zulässigkeit dieser Verwertung, anhand der hierfür zuständigen Richtlinie, Vorschrift oder Verordnung abschließend entscheiden zu können. Im Folgenden wird daher grundsätzlich zwischen den vier o.g. Verwertungswegen unterschieden.

6.1 Verwertungen in technischen Bauwerken gemäß Baumerkblatt

Zur Beurteilung der Untersuchungsergebnisse im Hinblick auf eine Verwertung anfallender Erdaushubmassen in technischen Bauwerken, sind diese mit den betreffenden Zuordnungswerten des Hessischen Baumerkblattes abzugleichen.

Hierzu werden die Untersuchungsergebnisse, mit unseren Anlagen 7 bis 10, in tabellarischer Form den Zuordnungswerten des Hessischen Baumerkblattes gegenübergestellt. Hiernach ergibt sich eine abfallrechtlich erforderliche Einstufung der untersuchten Bodenmischproben wie folgt:

Seite 25

Tabelle 4: abfallrechtliche Deklaration der untersuchten Bodenmischproben zur Verwertung in technischen Bauwerken

1	2	3	4
Spalte / Zeile	Probe	Einbauklasse gemäß "Baumerkblatt" Hessen (Stand 01.09.2018) bautechnische Verwertung nach Anhang 1 Tabellen 1.2 und 1.3	AVV-Abfallschlüssel Abfallbezeichnung
1	MP Boden 1	Z 0	
2	MP Boden 2	Z 0	17 05 04 Boden und Stein mit Ausnahme
3	MP Boden 3	Z 0	derjenigen, die unter 17 05 03* fallen
4	MP Boden 4	Z 0	

Mit den in Tabelle 4 genannten Deklarationen, könnten die anfallenden Erdaushubmassen demzufolge, als nicht gefährlicher Abfall, gänzlich einer bautechnischen Verwertung zugeführt werden.

Mangels entsprechender Verwertungswege wird, zumindest nach Erfahrungen des Unterzeichners, insbesondere aufgrund der Feinkörnigkeit der zu erwartenden Aushubmassen und ihrer bautechnisch schwierigen Eigenschaften, eine solche Verwertung regional jedoch nur stark eingeschränkt möglich sein.

Vor diesem Hintergrund sollte, im Rahmen der weiteren Planungen, eine klar zu favorisierende Verwertung der anfallenden Aushubmassen im Rahmen bodenähnlicher Anwendungen, unter Beachtung der Vorgaben der Hessischen Verfüllrichtlinie, mit einer Einstufung in die Einbauklasse Z 0* berücksichtigt werden.

6.2 Verwertungen in bodenähnlichen Anwendungen gemäß Baumerkblatt

Zur Beurteilung der Untersuchungsergebnisse im Hinblick auf eine Verwertung der aufzunehmenden Erdaushubmassen in bodenähnlichen Anwendungen (Verfüllung von Abgrabungen unterhalb der durchwurzelbaren Bodenschicht), wurden die Ergebnisse der Umweltanalytik, mit unseren Anlagen 7 bis 10, auch den Zuordnungswerten des Hessischen Baumerkblattes (Stand 01.09.2018, Tabellen 1.1 und 1.3) gegenübergestellt.

Gemäß diesen Gegenüberstellungen ist eine Deklaration der aufzunehmenden Erdaushubmassen im Sinne des Hessischen Baumerkblattes wie folgt vorzunehmen:

Tabelle 5: abfallrechtliche Deklaration der untersuchten Bodenmischproben zur Verwertung unterhalb durchwurzelbarer Bodenschichten – Verwertung in bodenähnlichen Anwendungen

1	2	3
Spalte / Zeile	Probe	Einbauklasse gemäß "Baumerkblatt" Hessen (Stand 01.09.2018) Verwertung in bodenähnlichen Anwendungen nach Anhang 1 Tabellen 1.1 und 1.3
1	MP Boden 1	Z 0* Chrom – 90 mg/kg
2	MP Boden 2	Z 0
3	MP Boden 3	Z 0* Chrom – 110 mg/kg Chrom – 52 mg/kg
4	MP Boden 4	Z 0* Chrom – 120 mg/kg Chrom – 51 mg/kg

Gemäß den Vorgaben des Hessischen Baumerkblattes und der nachgeschalteten Verfüllrichtlinie, ist eine Verwertung von Böden in bodenähnlichen Anwendungen – Verfüllung von Abgrabungen unterhalb der durchwurzelbaren Bodenschicht – innerhalb der mittleren Verfüllzone nur mit einer maximalen Deklaration in die Einbauklasse Z 0* bis Z 1.2 möglich. Demzufolge können, unter Berücksichtigung der geltenden bodenschutzrechtlichen Belange, alle innerhalb der beiden Projektareale anfallenden Erdaushubmassen, einer klar zu favorisierenden Verwertung im Rahmen bodenähnlicher Anwendungen zugeführt werden.

Seite 27

6.3 Verwertungen nach BBodSchV im Bereich durchwurzelbarer Bodenschichten

Zur Beurteilung der Untersuchungsergebnisse im Hinblick auf eine Verwertung der anfallenden Erdaushubmassen im Bereich durchwurzelbarer Bodenschichten, wurden die Ergebnisse der Umweltanalytik, mit den Anlagen 7 bis 10, auch den bodenartspezifischen Vorsorgewerten der BBodSchV gegenübergestellt.

Im Rahmen des vorsorgenden Bodenschutzes darf durch die Herstellung einer durchwurzelbaren Bodenschicht, aufgrund eventueller Schadstoffgehalte oder der sonstigen Bodenzusammensetzung nicht die Besorgnis des Entstehens schädlicher Bodenveränderungen gemäß § 7 Satz 2 BBodSchG und § 9 BBodSchV hervorgerufen werden. Vor diesem Hintergrund sind im Zuge von Verwertungsmaßnahmen nach BBodSchV daher die Vorsorgewerte nach BBodSchV Anhang 4 Nr. 4.1, bzw. die Vorgaben der "Richtlinie für die Verwertung von Bodenmaterial, Bauschutt und Straßenaufbruch in Tagebauen und im Rahmen sonstiger Abgrabungen" (Stand 03.03.2014) des Landes Hessen einzuhalten.

Basierend auf den Ergebnissen unserer Untersuchungen konnten in den untersuchten Mischproben entweder Überschreitungen maßgebender Vorsorgewerte nach BBodSchV oder aber bodenartbedingte Unverträglichkeiten im Sinne von DIN 19731:1998-05 festgestellt werden. Demnach sind <u>alle</u> innerhalb der beiden Projektareale anfallenden <u>Erdaushubmassen von einer Verwertung in durchwurzelbaren Bodenschichten grundsätzlich auszuschließen.</u>

6.4 Deponiebautechnische Verwertungsmaßnahmen nach DepV

Untersuchungen zur deponiebautechnischen Verwertung anfallender Erdaushubmassen waren nicht Gegenstand der uns vorliegenden Beauftragung und sind, aufgrund der vorliegenden Analysenergebnisse, auch nicht geboten.

Zudem kann, mit Verweis auf die unter den Ziffern 6.1 und 6.2 vorgenommenen Deklarationen, eine bautechnische Verwertung, oder aber eine klar zu favorisierende Verwertung der anfallenden Erdaushubmassen in bodenähnlichen Anwendungen vorgenommen werden.

Seite 28

7. Zusammenfassung und Schlussbemerkungen

Die zur tragwerksplanerischen Dimensionierung der Wohnbebauung erforderlichen Bodenund Bemessungskennwerte können dem vorliegenden Bericht entnommen werden. Die örtliche Baugrund- und Grundwassersituation wurde zudem hinsichtlich der anstehenden Erdbau- und Gründungsarbeiten eingehend beurteilt.

Unter Berücksichtigung der örtlichen Baugrundsituation, mit lokal stark unterschiedlich tragfähigen Böden, ist eine Gründung der Wohnbebauung mittels elastisch gebetteter Bodenplatten, aus geotechnischer Sicht, baugrundbedingt klar zu favorisieren.

Im Rahmen der Plattengründungen sollte, mittels Verteilung der Flächenlasten auf Sohldrücke von zwischen $\sigma_{R,d}$ von 135 kN/m² und maximal $\sigma_{R,d}$ von 720 kN/m², eine Begrenzung auftretender Gesamtsetzungen auf maximal 4 cm berücksichtigt werden.

Die so dimensionierten Plattengründungen setzen ferner die Auflagerung auf einem entsprechend unseren Empfehlungen in Abschnitt 5.1.1 dimensionierten Tragschicht-Unterbau voraus.

Aufgrund der geringen Wasserdurchlässigkeit anstehenden Baugrundschichten, die mit $k_f \le 1E-08$ bis $\le 1E-06$ m/s beziffert werden muss, ist mit einer mäßig drückenden Wasserbeanspruchung der erdberührenden Wohnhausabschnitte zu rechnen.

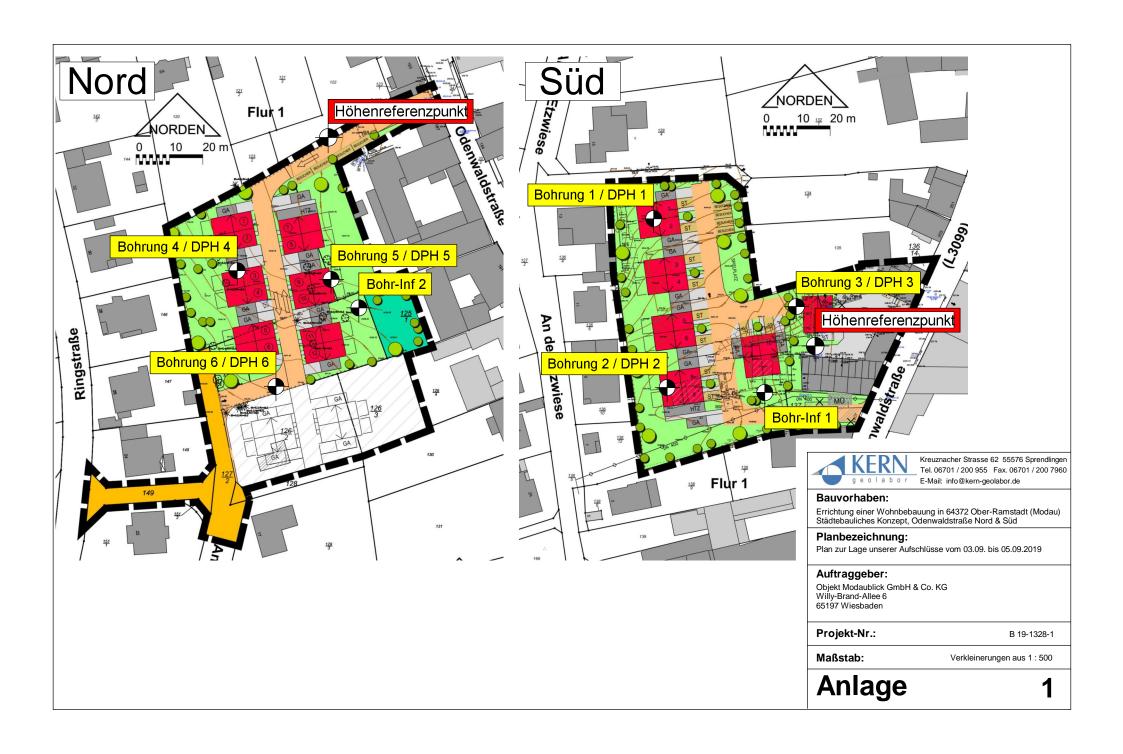
Unter Beachtung der im vorliegenden Bericht genannten Empfehlungen sind, bei sorgfältiger Planung, Ausführung und Überwachung der Gründungs- und Bauwerksabdichtungsarbeiten, bauwerksunverträgliche Setzungen, Verkantungen, Mindertragfähigkeiten oder Nässeschäden nicht zu erwarten.

Gemäß EC 7-1, Abs. 4.3.1 Boden und Fels (1)P müssen, während der Bauausführung, die Beschreibung und die geotechnischen Eigenschaften des Baugrundes in dem die einzelnen Bauwerke gegründet werden sollen, kontrolliert werden.

Mit Einstufung der einzelnen Doppelhäuser in die Geotechnische Kategorie 1, muss die mit vorliegendem Bericht vorgenommene Beschreibung des Baugrundes daher durch Abnahmen der Gründungssohlen kontrolliert werden. Zur Durchführung solcher Abnahmen sind mit unserem Büro im Zuge der Bauausführung rechtzeitig gesonderte Termine zu vereinbaren. Alternativ hierzu könnte uns von den Aushubsohlen auch aussagekräftiges Bildmaterial digital übermittelt werden, welches wir anschließend sehr zeitnah beurteilen würden.

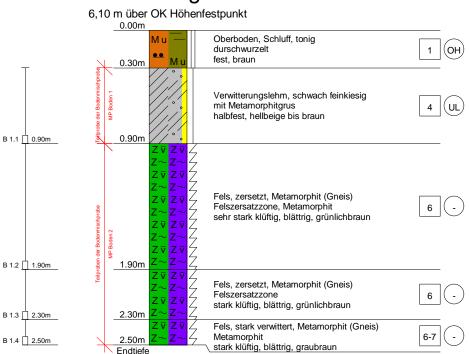
Seite 29

Abschließend bitten wir darum, insbesondere bei möglichen Umplanungen die Gründung oder die Abdichtungskonzeption betreffend, bzw. bei Gründungs- oder erdbautechnischen Problemen im Zuge der Bauausführung, auch weiterhin beratend hinzugezogen zu werden.


Onlinedokument ohne Unterschrift

Dipl.-Geol. Stephan Kern

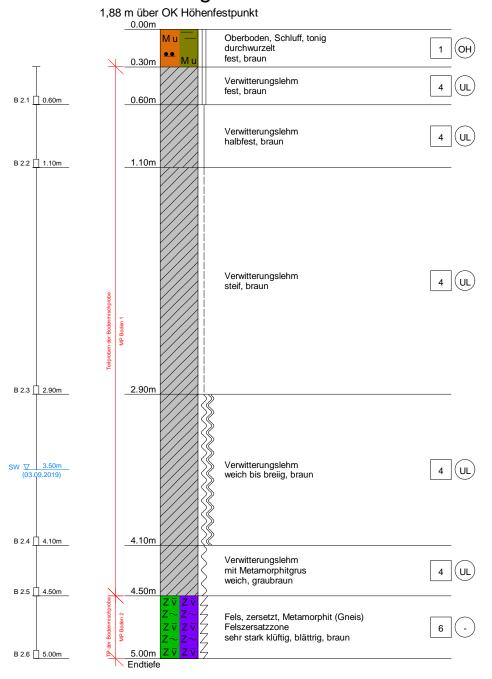
Verteiler per E-Mail:


Objekt Modaublick GmbH & Co. KG, Herrn Philipp Häfner – haefner@metropol-immobilien-ag.de
Objekt Modaublick GmbH & Co. KG, Herrn Erwin Herresthal – herresthal@m-immo-ag.de
Planungsbüro für Städtebau, Herrn Kai-Oliver Heintz – hek@planung-ghb.de
Herrn Sebastian Schlüter – dipl-ing-sebastian-schlueter@gmx.de

KERN-geolabor Kreuznacher Straße 62 55576 Sprendlingen Anlage : 2.1 Bohrprofil nach Projekt Errichtung einer Wohnbebauung in Ober-Ramstadt OT Modau, Odenwaldstraße Nord & Süd **DIN 4023** Projekt-Nr.: B 19-1328-1 / Objekt-Modaublick GmbH & Co. KG Maßstab: 1:30

Bohrung 1

Abbruch der Bohrung innerhalb der Felszone kein weiterer Bohrfortschritt möglich

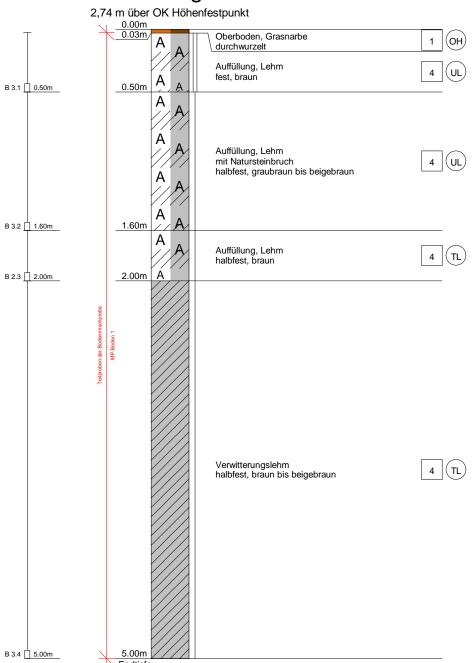

Endtiefe

siehe Lageplan / Anlage 1 Messstelle:

Bohrung vom: 03.09.2019 Bemerkungen: keine

KERN-geolabor Kreuznacher Straße 62 55576 Sprendlingen Bohrprofil nach DIN 4023 Anlage : 2.2 Projekt : Errichtung einer Wohnbebauung in Ober-Ramstadt OT Modau, Odenwaldstraße Nord & Süd Projekt-Nr.: B 19-1328-1 / Objekt-Modaublick GmbH & Co. KG Maßstab : 1: 30

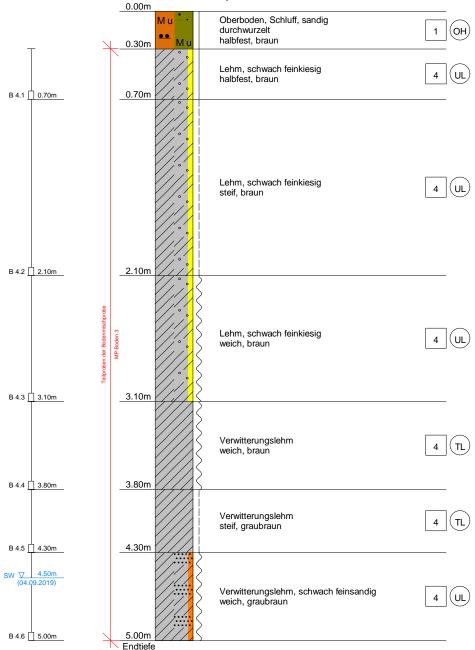
Bohrung 2



Messstelle: siehe Lageplan / Anlage 1

Bohrung vom: 03.09.2019 Bemerkungen: keine

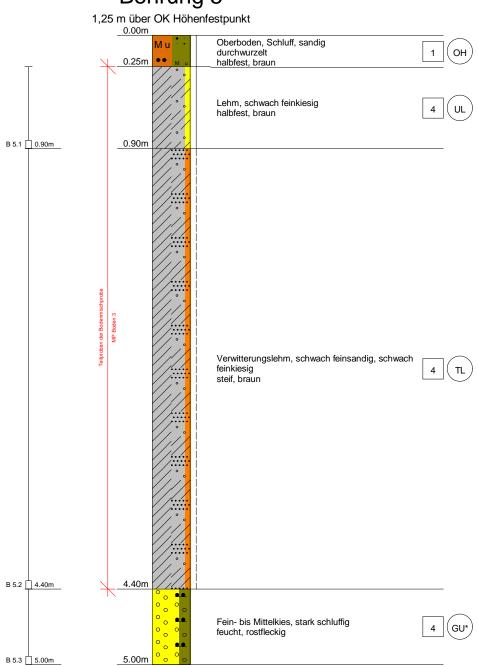
KERN-geolabor Kreuznacher Straße 62 55576 Sprendlingen Bohrprofil nach DIN 4023 Kreuznacher Straße 62 55576 Sprendlingen Anlage : 2.3 Projekt : Errichtung einer Wohnbebauung in Ober-Ramstadt OT Modau, Odenwaldstraße Nord & Süd Projekt-Nr.: B 19-1328-1 / Objekt-Modaublick GmbH & Co. KG Maßstab : 1: 30


Bohrung 3

Messstelle: siehe Lageplan / Anlage 1

Bohrung vom: 03.09.2019 Bemerkungen: keine

KERN-geolabor Bohrprofil nach DIN 4023 Kreuznacher Straße 62 55576 Sprendlingen Anlage : 2.4 Projekt : Errichtung einer Wohnbebauung in Ober-Ramstadt OT Modau, Odenwaldstraße Nord & Süd Projekt-Nr.: B 19-1328-1 / Objekt-Modaublick GmbH & Co. KG Maßstab : 1: 30 Bohrung 4 3,32 m über OK Höhenfestpunkt 0.00m Oberboden, Schluff, sandig durchwurzelt



Messstelle: siehe Lageplan / Anlage 1

Bohrung vom: 04.09.2019 Bemerkungen: keine

KERN-geolabor Bohrprofil nach DIN 4023 Kreuznacher Straße 62 55576 Sprendlingen Anlage : 2.5 Projekt : Errichtung einer Wohnbebauung in Ober-Ramstadt OT Modau, Odenwaldstraße Nord & Süd Projekt-Nr.: B 19-1328-1 / Objekt-Modaublick GmbH & Co. KG Maßstab : 1: 30

Bohrung 5

Messstelle: siehe Lageplan / Anlage 1

Bohrung vom: 04.09.2019 Bemerkungen: keine

KERN-geolabor Bohrprofil nach DIN 4023 Kreuznacher Straße 62 55576 Sprendlingen Anlage : 2.6 Projekt : Errichtung einer Wohnbebauung in Ober-Ramstadt OT Modau, Odenwaldstraße Nord & Süd Projekt-Nr.: B 19-1328-1 / Objekt-Modaublick GmbH & Co. KG Maßstab : 1: 30

Bohrung 6

Abbruch der Bohrung innerhalb der Felszone kein weiterer Bohrfortschritt möglich

3.00m Endtiefe

Messstelle: siehe Lageplan / Anlage 1

B 6.3 3.00m

Bohrung vom: 04.09.2019 Bemerkungen: keine

KERN-geolabor Kreuznacher Straße 62 55576 Sprendlingen Anlage 3.1 Projekt Errichtung einer Wohnbebauung in Ober-Ramstadt Schwere Rammsonde OT Modau, Odenwaldstraße Nord & Süd Projekt-Nr.: B 19-1328-1 / Objekt-Modaublick GmbH & Co. KG nach DIN EN ISO 22476-2 Messstelle: siehe Lageplan / Anlage 1 : 03.09.2019 Datum Maßstab: 1:40 Tiefe N₁₀ Tiefe N₁₀ Tiefe **N**₁₀ 0.10 2 DPH 1 2 0.20 6,10 m über OK Höhenfestpunkt 2 0.30 Anzahl Schläge N10 0.40 2 0.50 3 5 0.60 0.70 8 0.80 8 0.90 10 1.00 10 1.10 10 1.20 12 Eindringtiefe in m 1.30 12 1.40 11 1.50 16 1.60 20 1.70 28 1.80 30 30 1.90 2.00 20 2.10 23 2.20 21 2.30 31 Abbruch der Sondierung aufgrund eines unüberwindbaren 2.40 31 Rammhindernisses innerhalb der Felszone 2.50 26 2.60 36 25 2.70 2.80 23 2.90 48 3.00 58 3.10 136 Sondierspitze: 15 cm² Bodenart: siehe Profil der Bohrung 1 / Anlage 2.1

KERN-geolabor Kreuznacher Straße 62 55576 Sprendlingen Anlage 3.2 Errichtung einer Wohnbebauung in Ober-Ramstadt Projekt Schwere Rammsonde OT Modau, Odenwaldstraße Nord & Süd Projekt-Nr.: B 19-1328-1 / Objekt-Modaublick GmbH & Co. KG nach DIN EN ISO 22476-2 Messstelle: siehe Lageplan / Anlage 1 : 03.09.2019 Datum Maßstab: 1:40 Tiefe N₁₀ Tiefe N₁₀ Tiefe **N**₁₀ 0.10 2 4.10 DPH 2 3 4.20 5 0.20 1,88 m über OK Höhenfestpunkt 5 4.30 6 0.30 Anzahl Schläge N10 10 0.40 6 4.40 7 0.50 5 4.50 8 5 0.60 4.60 8 5 4.70 7 0.70 5 4.80 0.80 8 0.90 5 4.90 7 1.00 8 5.00 7 1.10 3 5.10 7 2 7 1.20 5.20 1 1.30 5.30 8 1.40 1 5.40 10 5.50 1.50 2 9 1.60 1 5.60 9 Eindringtiefe in m 1.70 5.70 2 9 3 -1 1.80 5.80 9 2 5.90 9 1.90 2.00 2 6.00 10 2 2.10 2.20 2 2 2.30 2 2.40 2.50 2 2.60 3 4 2.70 3 2.80 3 2.90 3 3.00 3.10 3 3.20 3 3.30 3

Sondierspitze: 15 cm² Bodenart: siehe Profil de

3.40

3.50 3.60

3.70 3.80

3.90

4.00

4 3

3 4

4

4

3

siehe Profil der Bohrung 2 / Anlage 2.2

KERN-geolabor Kreuznacher Straße 62 55576 Sprendlingen Anlage 3.3 Errichtung einer Wohnbebauung in Ober-Ramstadt Projekt Schwere Rammsonde OT Modau, Odenwaldstraße Nord & Süd Projekt-Nr.: B 19-1328-1 / Objekt-Modaublick GmbH & Co. KG nach DIN EN ISO 22476-2 Messstelle: siehe Lageplan / Anlage 1 : 03.09.2019 Datum Maßstab: 1:40 Tiefe **N**10 Tiefe N₁₀ Tiefe **N**₁₀ 0.10 3 4.10 64 DPH 3 4.20 **112** 0.20 10 2,74 m über OK Höhenfestpunkt 0.30 12 Anzahl Schläge N10 0.40 15 0.50 10 0.60 28 0.70 14 5 0.80 0.90 5 1.00 5 1.10 5 1.20 4 5 1.30 1.40 4 Eindringtiefe in m 1.50 4 1.60 2 1.70 0 1 1.80 3 1.90 2.00 4 5 2.10 2.20 6 2.30 3 3 2.40 2.50 3 2.60 3 3 2.70 Abbruch aufgrund eines unüberwindbaren 2.80 2 Rammhindernisses 3 2.90 4 3.00 3.10 4 3.20 3 3.30 3 3.40 3 5 3.50 4 3.60 3.70 4 3.80 6 3.90 8 4.00 8 Sondierspitze: 15 cm² Bodenart: siehe Profil der Bohrung 3 / Anlage 2.3

KERN-geolabor Kreuznacher Straße 62 55576 Sprendlingen Anlage 3.4 Errichtung einer Wohnbebauung in Ober-Ramstadt Projekt Schwere Rammsonde OT Modau, Odenwaldstraße Nord & Süd Projekt-Nr.: B 19-1328-1 / Objekt-Modaublick GmbH & Co. KG nach DIN EN ISO 22476-2 Messstelle: siehe Lageplan / Anlage 1 : 04.09.2019 Datum Maßstab: 1:40 Tiefe N₁₀ Tiefe N₁₀ Tiefe **N**₁₀ 0.10 1 4.10 8 DPH 4 4.20 0.20 3 8 3,32 m über OK Höhenfestpunkt 2 4.30 8 0.30 Anzahl Schläge N10 0.40 2 4.40 8 7 0.50 3 4.50 2 7 0.60 4.60 4.70 7 0.70 2 4.80 0.80 3 7 0.90 2 4.90 7 1.00 2 5.00 7 1.10 2 1 1.20 1 1.30 1.40 1 Eindringtiefe in m 1.50 1 1.60 1 1.70 1 1.80 0 1 1.90 2.00 1 1 2.10 2.20 1 1 2.30 2 2.40 2 2.50 2.60 2 2 2.70 2.80 3 3 2.90 3 3.00 3.10 3 3.20 3 3.30 6 3.40 6 6 3.50 3.60 6 7 3.70 3.80 7 3.90 8 4.00 7 15 cm² | Bodenart: Sondierspitze: siehe Profil der Bohrung 4 / Anlage 2.4

KERN-geolabor Kreuznacher Straße 62 55576 Sprendlingen Anlage 3.5 Errichtung einer Wohnbebauung in Ober-Ramstadt Projekt Schwere Rammsonde OT Modau, Odenwaldstraße Nord & Süd Projekt-Nr.: B 19-1328-1 / Objekt-Modaublick GmbH & Co. KG nach DIN EN ISO 22476-2 Messstelle: siehe Lageplan / Anlage 1 : 04.09.2019 Datum Maßstab: 1:40 Tiefe N₁₀ Tiefe N₁₀ Tiefe **N**₁₀ 0.10 3 4.10 6 DPH 5 5 4.20 6 0.20 1,25 m über OK Höhenfestpunktt 5 4.30 0.30 6 Anzahl Schläge N10 10 0.40 5 4.40 6 0.50 4 4.50 6 3 7 0.60 4.60 4.70 7 0.70 1 4.80 7 0.80 2 4.90 0.90 2 8 1.00 2 5.00 8 1.10 2 1 1.20 2 1.30 1.40 1 Eindringtiefe in m 1.50 1 1.60 2 1.70 1 2 1.80 2 1.90 2.00 1 2 2.10 2.20 1 1 2.30 1 2.40 2.50 2 2.60 2 2 2.70 2.80 3 3 2.90 3 3.00 3.10 3 4 3.20 4 3.30 3.40 5 4 3.50 5 3.60 3.70 5 5 3.80 3.90 7 4.00 6 15 cm² | Bodenart: Sondierspitze: siehe Profil der Bohrung 5 / Anlage 2.5

k	(FR	N-ge	olal	or	Kr	euznacher Straße 62 55576 Sprendlingen
	<u></u>	. . 90	Jiai		1 111	Anlage : 3.6
		_				Projekt : Errichtung einer Wohnbebauung in Ober-Ramstadt
	Schw	ere Ra	amm	sonde	!	OT Modau, Odenwaldstraße Nord & Süd
						Projekt-Nr. : B 19-1328-1 / Objekt-Modaublick GmbH & Co. KG
nac	ch DI	N EN	ISO :	22476	6-2	Messstelle: siehe Lageplan / Anlage 1
						Datum : 04.09.2019
						Maßstab : 1:40
Tiefe	N ₁₀	Tiefe	N ₁₀	Tiefe	N 10	
0.10	2					DPH 6
0.20	5					4,88 m über OK Höhenfestpunkt
0.30	5					Anzahl Schläge N10
0.40	5					0 10 20 30 40
0.50	5					
0.60	4					
0.70	4					
0.80	3					
0.90	4					1
1.00	5					
1.10	4					
1.20	5					
1.30	6					Eindringtie in m
1.40	5					dring
1.50	5					
1.60	6					
1.70	6					1 1 1
1.80	8					3-
1.90	9					1 1 1
2.00	8					1
2.10	7					66
2.20	7					130
2.30	9					Abbruch der Sendierung gufarund eines unüberwindberen
2.40	11					Abbruch der Sondierung aufgrund eines unüberwindbaren Rammhindernisses innerhalb der Felszone
2.50	12					1
2.60	13					1
2.70	16					1
2.80	19					1
2.90	20					1
3.00	21					1
3.10	22					1
3.20	23					1
3.30	23					†
3.40	25					†
3.50	30					1
						1
3.60	34					1
3.70	38					-
3.80	66					-
3.90	130					-
- 1				1		

D	- 4-	امماء	.:	4:14	1:000,000	-	Daby Inf 4
D	oni	rioci	H	mitra	tionsversu	cn -	Dont-int 1

Projekt Nr.: B 19-1328-1 Anlage Nr.:

4.1

Projekt:

Auftraggeber:

Errichtung einer Wohnbebauung in 64372 Ober-

Ramstadt (Modau) Städtebauliches Konzept,

Odenwaldstraße Nord & Süd Objekt Modaublick GmbH &

Co. KG

Willy-Brand-Allee 6 65197 Wiesbaden

Prüfung durch:

Kern

Bemerkungen: Auswertung gemäß Earth

Maunual für h<H<3h

Messstelle:

Lage siehe Anlage 1

Bohrtiefe:

1,00 m unter OK Gelände

maßgebende

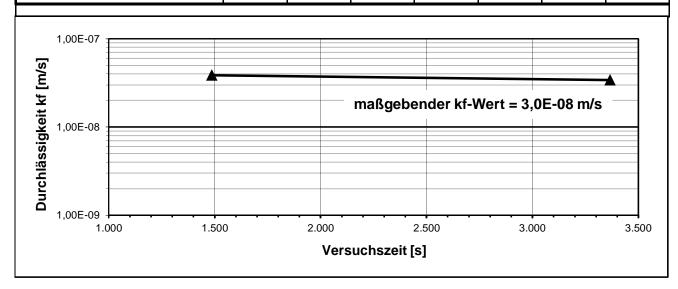
Verwitterungslehm

Bodenart:

Datum der Prüfung: 5. September 2019

Versuchsbedingungen

Wasserstand h:


konstanter Wasserstand im Bohrloch = Druckhöhe konstant

Annahme:

Abstand H des Grundwassers zum Wasserspiegel im Bohrloch > 80 m

Messergebnisse

							-	
Versuch Nr.		1	2	3	4	5	6	7
Wasserstand im Bohrloch h	m	1,00	1,00					
Abstand GW - Wasserstand H	m	80,00	80,00					
Radius des Bohrlochs r	m	0,030	0,030					
Versuchsdauer t	S	1.486	3.366					
Wassermenge q	m³	1,00E-03	2,00E-03					
Versickerungsrate Q = q/t	m³/s	6,73E-07	5,94E-07					
		·	-	-		•		
Durchlässigkeit k	m/s	3,87E-08	3,42E-08					

Rohrloc	hinfiltrations	wareuch -	Rohr-Inf 2
	i iii ii ii ii alioi is	veisucii -	

Projekt Nr.: B 19-1328-1 Anlage Nr.:

4.2

Projekt:

Auftraggeber:

Errichtung einer Wohnbebauung in 64372 Ober-

Ramstadt (Modau) Städtebauliches Konzept,

Odenwaldstraße Nord & Süd Objekt Modaublick GmbH &

Co. KG

Willy-Brand-Allee 6

65197 Wiesbaden

Prüfung durch:

Kern

Bemerkungen: Auswertung gemäß Earth

Maunual für h<H<3h

Messstelle:

Lage siehe Anlage 1

Bohrtiefe:

1,00 m unter OK Gelände

maßgebende

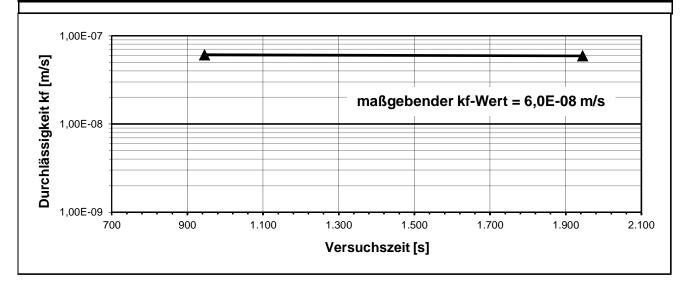
Verwitterungslehm

Bodenart:

Datum der Prüfung: 5. September 2019

Versuchsbedingungen

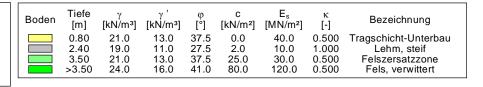
Wasserstand h:

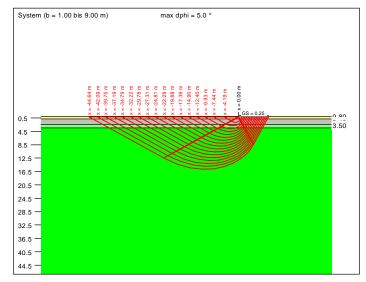

konstanter Wasserstand im Bohrloch = Druckhöhe konstant

Annahme:

Abstand H des Grundwassers zum Wasserspiegel im Bohrloch > 80 m

Messergebnisse


	1	2	3	4	5	6	7
m	1,00	1,00					
m	80,00	80,00					
m	0,030	0,030					
S	945	1.945					
m³	1,00E-03	2,00E-03					
m³/s	1,06E-06	1,03E-06					
					•	•	
	m m s m³	m 80,00 m 0,030 s 945 m³ 1,00E-03	m 1,00 1,00 m 80,00 80,00 m 0,030 0,030 s 945 1.945 m³ 1,00E-03 2,00E-03	m 1,00 1,00 m 80,00 80,00 m 0,030 0,030 s 945 1.945 m³ 1,00E-03 2,00E-03	m 1,00 1,00 m 80,00 80,00 m 0,030 0,030 s 945 1.945 m³ 1,00E-03 2,00E-03	m 1,00 1,00 m 80,00 80,00 m 0,030 0,030 s 945 1.945 m³ 1,00E-03 2,00E-03	m 1,00 1,00 m 80,00 80,00 m 0,030 0,030 s 945 1.945 m³ 1,00E-03 2,00E-03



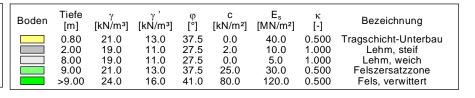
Exemplarische Grundbruch- und Setzungsberechnung für Plattengründungen - Nord - geplante Erweiterung Auftraggeber: Objekt Modaublick GmbH & Co. KG

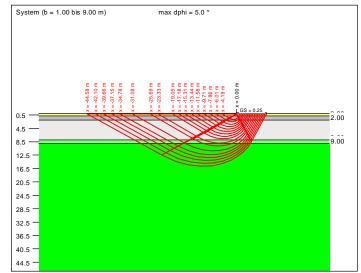
Berechnung: exemplarische Plattenabmessungen a = 12 m und b = variabel

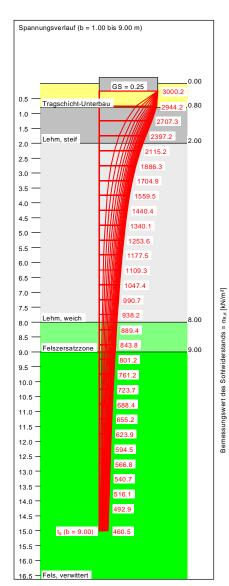

Fundamentbreite b [m]



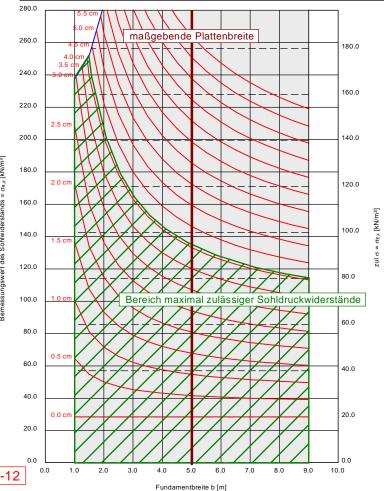
a [m]	b [m]	σ _{0ξk} [kN/m²]	σ _{R,d} [kN/m²]	R _{n,d} [kN]	σ _{E,k} [kN/m²]	s [cm]	cal φ [°]	cal c [kN/m²]	γ ₂ [kN/m³]	σ _ü [kN/m²]	t _g [m]	UK LS [m]	k _s [MN/m³]
12.00	1.00	332.6	237.6	2850.9	166.7	1.06 *	29.5 **	1.45	19.98	5.25	8.00	1.81	15.7
12.00	1.50	960.2	685.9	12345.5	481.3	4.16 *	32.4 **	9.38	19.76	5.25	8.00	2.85	11.6
12.00	2.00	1740.6	1243.3	29838.2	872.5	8.73 *	32.5 **	24.53	19.86	5.25	8.00	3.72	10.0
12.00	2.50	2467.1	1762.2	52865.4	1236.6	13.58 *	32.5 **	38.45	19.47	5.25	8.00	4.58	9.1
12.00	3.00	2925.3	2089.5	75220.9	1466.3	17.19 *	32.5 **	45.76	19.08	5.25	8.00	5.45	8.5
12.00	3.50	3285.1	2346.5	98553.5	1646.7	20.31 *	32.5 **	50.71	18.75	5.25	8.00	6.32	8.1
12.00	4.00	3593.1	2566.5	123193.5	1801.1	23.16 *	32.5 **	54.39	18.47	5.25	8.00	7.19	7.8
12.00	4.50	3833.7	2738.4	147872.1	1921.7	25.57 *	32.4 **	57.18	18.25	5.25	8.00	8.04	7.5
12.00	5.00	4095.8	2925.6	175535.1	2053.0	28.14 *	32.5 **	59.49	18.06	5.25	8.00	8.91	7.3
12.00	5.50	4327.9	3091.3	204028.8	2169.4	30.50 *	32.5 **	61.36	17.90	5.25	8.00	9.78	7.1
12.00	6.00	4535.5	3239.7	233255.9	2273.4	32.68 *	32.5 **	62.91	17.76	5.25	8.00	10.65	7.0
12.00	6.50	4722.8	3373.4	263125.0	2367.3	34.70 *	32.4 **	64.21	17.64	5.25	8.00	11.50	6.8
12.00	7.00	4940.3	3528.8	296418.1	2476.3	36.93 *	32.5 **	65.36	17.54	5.25	8.00	12.39	6.7
12.00	7.50	5096.9	3640.7	327660.5	2554.9	38.69 *	32.5 **	66.32	17.45	5.25	8.00	13.24	6.6
12.00	8.00	5292.5	3780.4	362913.7	2652.9	40.74 *	32.5 **	67.19	17.36	5.25	8.00	14.12	6.5
12.00	8.50	5425.0	3875.0	395250.3	2719.3	42.28 *	32.4 **	67.92	17.29	5.25	8.00	14.96	6.4
12.00	9.00	5603.1	4002.2	432235.9	2808.6	44.16 *	32.5 **	68.60	17.22	5.25	8.00	15.84	6.4


^{**} phi wegen 5° Bedingung abgemindert $\sigma_{E,k} = \sigma_{0t,k} / \left(\gamma_{R,v} \cdot \gamma_{(0,0)} \right) = \sigma_{0t,k} / \left(1.40 \cdot 1.43 \right) = \sigma_{0t,k} / 1.99 \text{ (für Setzungen)}$



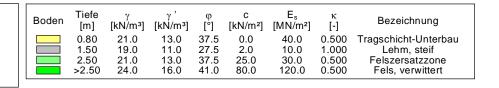

Exemplarische Grundbruch- und Setzungsberechnung für Plattengründungen - Nord - Gebäude 1-12 Auftraggeber: Objekt Modaublick GmbH & Co. KG

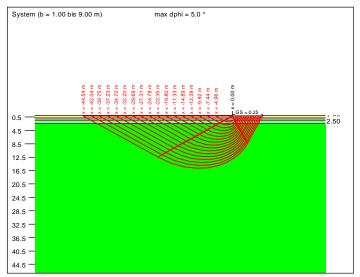
Berechnung: exemplarische Plattenabmessungen a = 12 m und b = variabel



a [m]	b [m]	σ _{0(k} [kN/m²]	σ _{R,d} [kN/m²]	R _{n,d} [kN]	σ _{E,k} [kN/m²]	s [cm]	cal φ [°]	cal c [kN/m²]	γ ₂ [kN/m³]	σ _ü [kN/m²]	t _g [m]	UK LS [m]	k _s [MN/m³]
12.00	1.00	332.6	237.6	2850.9	166.7	2.91 *	29.5 **	1.45	19.98	5.25	15.00	1.81	5.7
12.00	1.50	352.6	251.9	4534.0	176.8	4.24 *	28.7 **	0.84	19.70	5.25	15.00	2.53	4.2
12.00	2.00	396.7	283.4	6801.1	198.9	5.91 *	28.4 **	0.62	19.54	5.25	15.00	3.25	3.4
12.00	2.50	440.0	314.3	9428.2	220.5	7.63 *	28.2 **	0.50	19.07	5.25	15.00	3.97	2.9
12.00	3.00	474.9	339.2	12211.1	238.0	9.23 *	28.1 **	0.42	18.26	5.25	15.00	4.70	2.6
12.00	3.50	507.0	362.1	15208.7	254.1	10.77 *	28.0 **	0.36	17.53	5.25	15.00	5.42	2.4
12.00	4.00	537.9	384.2	18442.3	269.6	12.28 *	27.9 **	0.32	16.91	5.25	15.00	6.15	2.2
12.00	4.50	566.8	404.9	21863.1	284.1	13.73 *	27.9 **	0.28	16.39	5.25	15.00	6.88	2.1
12.00	5.00	595.1	425.1	25503.1	298.3	15.15 *	27.8 **	0.25	15.95	5.25	15.00	7.61	2.0
12.00	5.50	1069.1	763.7	50401.1	535.9	29.22 *	29.7 **	6.76	15.40	5.25	15.00	8.89	1.8
12.00	6.00	1698.6	1213.3	87354.9	851.4	48.74 *	29.9 **	21.10	15.22	5.25	15.00	9.73	1.7
12.00	6.50	2719.2	1942.3	151496.0	1363.0	81.13 *	31.8 **	31.64	15.10	5.25	15.00	11.25	1.7
12.00	7.00	3294.3	2353.1	197659.1	1651.3	101.20 *	32.5 **	36.67	15.08	5.25	15.00	12.39	1.6
12.00	7.50	3526.5	2518.9	226704.8	1767.7	111.03 *	32.4 **	39.61	15.07	5.25	15.00	13.23	1.6
12.00	8.00	3773.0	2695.0	258719.2	1891.2	121.44 *	32.4 **	42.27	15.08	5.25	15.00	14.10	1.6
12.00	8.50	3989.1	2849.3	290632.7	1999.5	130.99 *	32.4 **	44.52	15.09	5.25	15.00	14.96	1.5
12.00	9.00	4200.3	3000.2	324020.7	2105.4	140.45 *	32.4 **	46.51	15.11	5.25	15.00	15.82	1.5

Flachgründung / Gründungen mittels elastisch gebetteter Bodenplatten - Nord - Gebäude 1-12

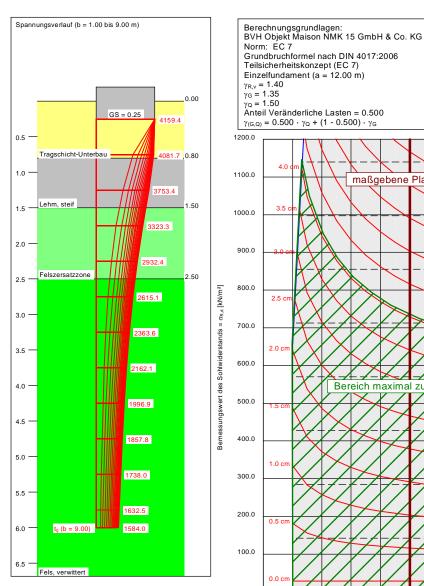

Anlage Ω N


^{**} phi wegen 5° Bedingung abgemindert $\sigma_{E,k} = \sigma_{0t,k} / \left(\gamma_{R,v} \cdot \gamma_{(0,0)} \right) = \sigma_{0t,k} / \left(1.40 \cdot 1.43 \right) = \sigma_{0t,k} / 1.99 \text{ (für Setzungen)}$

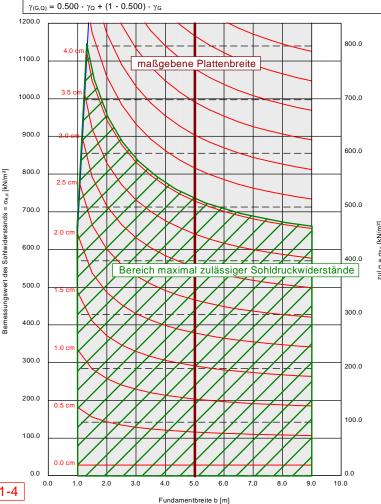
Verhältnis Veränderliche(Q)/Gesamtlasten(G+Q) [-] = 0.50

Exemplarische Grundbruch- und Setzungsberechnung für Plattengründungen - Süd - Gebäude 1-4 Auftraggeber: Objekt Modaublick GmbH & Co. KG

Berechnung: exemplarische Plattenabmessungen a = 12 m und b = variabel

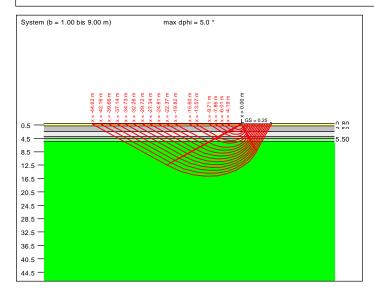


a [m]	b [m]	σ _{0(k} [kN/m²]	σ _{R,d} [kN/m²]	R _{n,d} [kN]	σ _{E,k} [kN/m²]	s [cm]	cal φ [°]	cal c [kN/m²]	γ ₂ [kN/m³]	σ _û [kN/m²]	t _g [m]	UK LS [m]	k _s [MN/m³]
12.00	1.00	920.9	657.8	7893.5	461.6	2.06 *	32.4 **	11.49	20.18	5.25	6.00	1.98	22.4
12.00	1.50	1934.9	1382.1	24877.7	969.9	5.31 *	32.5 **	32.29	20.50	5.25	6.00	2.85	18.3
12.00	2.00	2656.3	1897.4	45536.8	1331.5	8.17 *	32.5 **	45.50	20.97	5.25	6.00	3.71	16.3
12.00	2.50	3101.7	2215.5	66466.0	1554.8	10.29 *	32.4 **	52.50	20.56	5.25	6.00	4.58	15.1
12.00	3.00	3458.5	2470.4	88933.1	1733.6	12.16 *	32.5 **	57.11	20.08	5.25	6.00	5.45	14.3
12.00	3.50	3733.5	2666.8	112006.1	1871.4	13.74 *	32.4 **	60.35	19.67	5.25	6.00	6.31	13.6
12.00	4.00	3988.4	2848.9	136746.7	1999.2	15.23 *	32.4 **	62.80	19.32	5.25	6.00	7.17	13.1
12.00	4.50	4247.5	3033.9	163830.4	2129.0	16.73 *	32.5 **	64.74	19.02	5.25	6.00	8.05	12.7
12.00	5.00	4444.4	3174.6	190475.5	2227.8	17.97 *	32.4 **	66.25	18.77	5.25	6.00	8.90	12.4
12.00	5.50	4664.6	3331.8	219902.0	2338.1	19.28 *	32.5 **	67.51	18.56	5.25	6.00	9.78	12.1
12.00	6.00	4825.2	3446.6	248154.7	2418.7	20.32 *	32.4 **	68.53	18.38	5.25	6.00	10.63	11.9
12.00	6.50	5020.1	3585.8	279693.3	2516.4	21.49 *	32.4 **	69.42	18.22	5.25	6.00	11.50	11.7
12.00	7.00	5206.5	3718.9	312388.1	2609.8	22.61 *	32.5 **	70.18	18.08	5.25	6.00	12.37	11.5
12.00	7.50	5385.3	3846.7	346199.4	2699.4	23.68 *	32.5 **	70.84	17.96	5.25	6.00	13.25	11.4
12.00	8.00	5557.5	3969.7	381087.2	2785.7	24.70 *	32.5 **	71.42	17.84	5.25	6.00	14.12	11.3
12.00	8.50	5664.7	4046.2	412713.9	2839.4	25.42 *	32.4 **	71.90	17.75	5.25	6.00	14.95	11.2
12.00	9.00	5823.1	4159.4	449212.2	2918.9	26.35 *	32.4 **	72.35	17.66	5.25	6.00	15.82	11.1



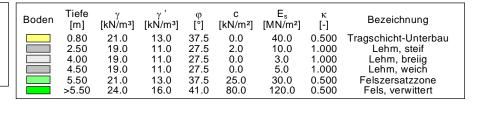
^{**} phi wegen 5° Bedingung abgemindert $\sigma_{E,k} = \sigma_{0f,k} / \left(\gamma_{R,v} \cdot \gamma_{(0,Q)} \right) = \sigma_{0f,k} / \left(1.40 \cdot 1.43 \right) = \sigma_{0f,k} / 1.99 \; (für \; Setzungen)$

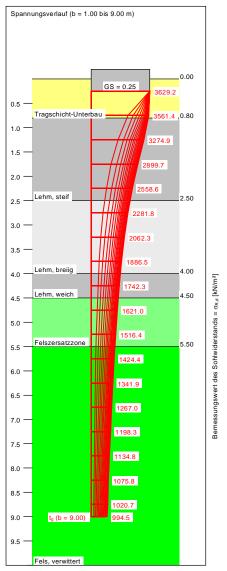
 $\gamma_{(G,Q)} = 1.425$ Tiefenbeiwerte nach: IEG7 (SE) Gründungssohle = 0.25 m Grundwasser = 3.50 m Vorbelastung = 20.0 kN/m² Grenztiefe mit festem Wert von 5.75 m u. GS Grundbruch mit Tiefenbeiwerten Sohldruck Setzungen

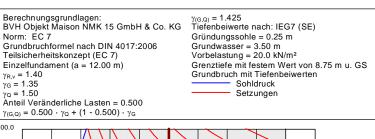


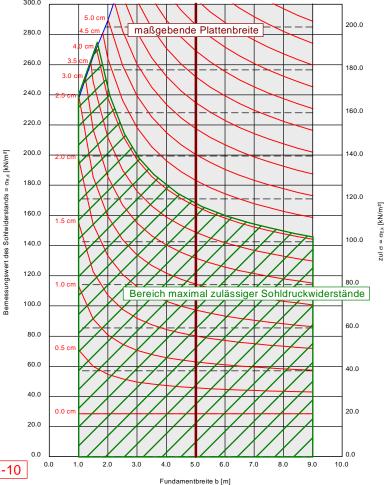
Flachgründung / Gründungen mittels elastisch gebetteter Bodenplatten - Süd - Gebäude 1-4

Anlage Ω


Exemplarische Grundbruch- und Setzungsberechnung für Plattengründungen - Süd - Gebäude 5-10 Auftraggeber: Objekt Modaublick GmbH & Co. KG


Berechnung: exemplarische Plattenabmessungen a = 12 m und b = variabel

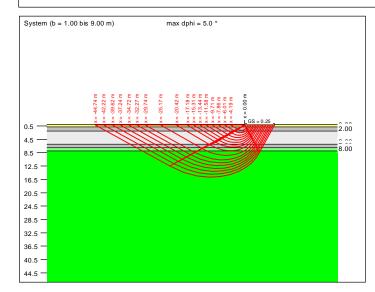



a [m]	b [m]	σ _{0(k} [kN/m²]	σ _{R,d} [kN/m²]	R _{n,d} [kN]	σ _{E,k} [kN/m²]	s [cm]	cal φ [°]	cal c [kN/m²]	γ ₂ [kN/m³]	σ _û [kN/m²]	t _g [m]	UK LS [m]	k _s [MN/m³]
12.00	1.00	332.6	237.6	2850.9	166.7	2.48 *	29.5 **	1.45	19.98	5.25	9.00	1.81	6.7
12.00	1.50	371.7	265.5	4779.0	186.3	3.77 *	28.7 **	1.46	19.70	5.25	9.00	2.53	4.9
12.00	2.00	404.9	289.2	6941.3	203.0	4.98 *	28.4 **	0.90	19.54	5.25	9.00	3.25	4.1
12.00	2.50	446.3	318.8	9562.9	223.7	6.29 *	28.2 **	0.71	19.07	5.25	9.00	3.97	3.6
12.00	3.00	991.8	708.5	25504.3	497.2	16.13 *	30.8 **	7.90	17.89	5.25	9.00	5.16	3.1
12.00	3.50	1587.5	1134.0	47626.0	795.8	28.09 *	30.6 **	22.65	17.41	5.25	9.00	5.92	2.8
12.00	4.00	2653.4	1895.3	90974.2	1330.0	50.08 *	32.4 **	35.58	17.04	5.25	9.00	7.17	2.7
12.00	4.50	3034.5	2167.5	117044.6	1521.0	59.97 *	32.5 **	40.91	16.88	5.25	9.00	8.05	2.5
12.00	5.00	3333.7	2381.2	142874.4	1671.0	68.43 *	32.5 **	44.91	16.77	5.25	9.00	8.91	2.4
12.00	5.50	3623.1	2587.9	170801.3	1816.1	76.82 *	32.5 **	48.17	16.67	5.25	9.00	9.79	2.4
12.00	6.00	3850.2	2750.1	198010.0	1929.9	83.95 *	32.4 **	50.78	16.60	5.25	9.00	10.63	2.3
12.00	6.50	4100.1	2928.6	228431.7	2055.2	91.64 *	32.5 **	53.06	16.54	5.25	9.00	11.51	2.2
12.00	7.00	4317.0	3083.6	259022.5	2163.9	98.65 *	32.5 **	54.98	16.50	5.25	9.00	12.38	2.2
12.00	7.50	4505.6	3218.3	289648.3	2258.5	105.03 *	32.4 **	56.61	16.46	5.25	9.00	13.23	2.2
12.00	8.00	4714.3	3367.4	323269.6	2363.1	111.92 *	32.4 **	58.09	16.42	5.25	9.00	14.10	2.1
12.00	8.50	4905.5	3503.9	357398.5	2458.9	118.41 *	32.5 **	59.39	16.39	5.25	9.00	14.97	2.1
12.00	9.00	5080.8	3629.2	391948.6	2546.8	124.55 *	32.4 **	60.53	16.36	5.25	9.00	15.83	2.0

Flachgründung / Gründungen mittels elastisch gebetteter Bodenplatten - Süd - Gebäude 5-10

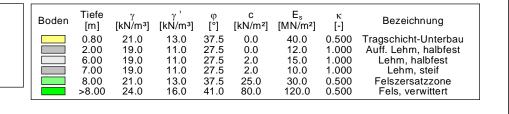
Anlage Ω

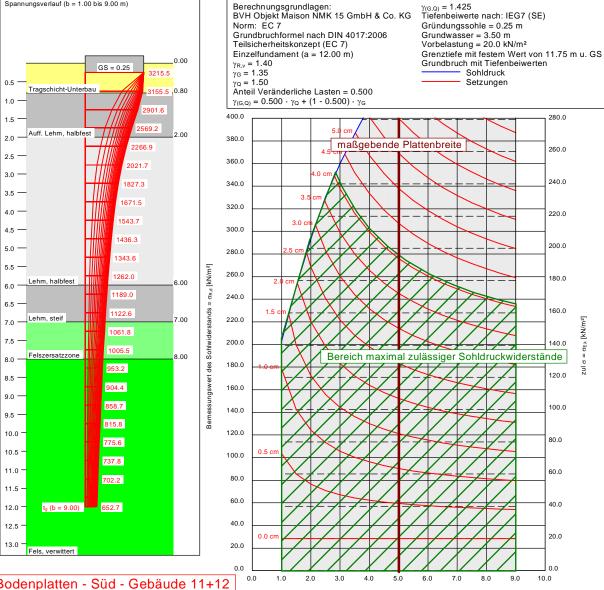
^{**} phi wegen 5° Bedingung abgemindert $\sigma_{E,k} = \sigma_{0t,k} / \left(\gamma_{R,v} \cdot \gamma_{(0,0)} \right) = \sigma_{0t,k} / \left(1.40 \cdot 1.43 \right) = \sigma_{0t,k} / 1.99 \text{ (für Setzungen)}$


Verhältnis Veränderliche(Q)/Gesamtlasten(G+Q) [-] = 0.50

Exemplarische Grundbruch- und Setzungsberechnung für Plattengründungen - Süd - Gebäude 11+12

Spannungsverlauf (b = 1.00 bis 9.00 m)


Auftraggeber: Objekt Modaublick GmbH & Co. KG


Berechnung: exemplarische Plattenabmessungen a = 12 m und b = variabel

a [m]	b [m]	σ _{0(k} [kN/m²]	σ _{R,d} [kN/m²]	R _{n,d} [kN]	σ _{E,k} [kN/m²]	s [cm]	cal φ [°]	cal c [kN/m²]	γ ₂ [kN/m³]	σ _Ü [kN/m²]	t _g [m]	UK LS [m]	k _s [MN/m³]
12.00	1.00	284.8	203.4	2441.0	142.7	1.17 *	29.5 **	0.00	19.98	5.25	12.00	1.81	12.2
12.00	1.50	351.1	250.8	4513.7	176.0	1.95 *	28.7 **	0.79	19.70	5.25	12.00	2.53	9.0
12.00	2.00	410.8	293.4	7042.5	205.9	2.76 *	28.4 **	1.09	19.54	5.25	12.00	3.25	7.5
12.00	2.50	463.0	330.7	9920.5	232.1	3.56 *	28.2 **	1.27	19.07	5.25	12.00	3.97	6.5
12.00	3.00	504.0	360.0	12959.3	252.6	4.29 *	28.1 **	1.39	18.26	5.25	12.00	4.70	5.9
12.00	3.50	540.6	386.2	16219.5	271.0	4.98 *	28.0 **	1.47	17.53	5.25	12.00	5.42	5.4
12.00	4.00	575.3	410.9	19724.3	288.4	5.64 *	27.9 **	1.54	16.91	5.25	12.00	6.15	5.1
12.00	4.50	607.3	433.8	23423.2	304.4	6.28 *	27.9 **	1.59	16.39	5.25	12.00	6.88	4.8
12.00	5.00	987.0	705.0	42300.1	494.7	10.92 *	29.1 **	8.11	15.87	5.25	12.00	7.93	4.5
12.00	5.50	2178.4	1556.0	102694.3	1091.9	25.55 *	31.0 **	28.05	15.58	5.25	12.00	9.31	4.3
12.00	6.00	3048.9	2177.8	156802.1	1528.3	37.07 *	32.4 **	35.80	15.48	5.25	12.00	10.64	4.1
12.00	6.50	3349.2	2392.3	186595.5	1678.8	41.87 *	32.5 **	39.49	15.45	5.25	12.00	11.51	4.0
12.00	7.00	3601.7	2572.7	216104.5	1805.4	46.14 *	32.4 **	42.49	15.43	5.25	12.00	12.37	3.9
12.00	7.50	3853.2	2752.3	247705.5	1931.4	50.45 *	32.5 **	45.08	15.43	5.25	12.00	13.25	3.8
12.00	8.00	4053.6	2895.4	277959.3	2031.9	54.12 *	32.4 **	47.23	15.43	5.25	12.00	14.09	3.8
12.00	8.50	4292.1	3065.8	312711.7	2151.4	58.33 *	32.5 **	49.24	15.43	5.25	12.00	14.98	3.7
12.00	9.00	4501.7	3215.5	347274.7	2256.5	62.16 *	32.5 **	50.96	15.44	5.25	12.00	15.86	3.6

Anlage

 Ω

Ġ

^{**} phi wegen 5° Bedingung abgemindert $\sigma_{E,k} = \sigma_{0t,k} / \left(\gamma_{R,v} \cdot \gamma_{(0,0)} \right) = \sigma_{0t,k} / \left(1.40 \cdot 1.43 \right) = \sigma_{0t,k} / 1.99 \text{ (für Setzungen)}$

Verhältnis Veränderliche(Q)/Gesamtlasten(G+Q) [-] = 0.50

Anlage 6

WESSLING GmbH Rudolf-Diesel-Straße 23 · 64331 Weiterstadt www.wessling.de

WESSLING GmbH, Rudolf-Diesel-Str. 23, 64331 Weiterstadt

KERN - Geolabor Herr Stephan Kern Kreuznacher Straße 62 55576 Sprendlingen Geschäftsfeld:

Umwelt

Ansprechpartner:

V. Jourdan

Durchwahl: Fax: +49 6151 3 636 21 +49 6151 3 636 20

E-Mail:

volker.jourdan

@wessling.de

Prüfbericht

Projekt-Nr.: B 19-1328-1

Prüfbericht Nr.	CRM19-008454-1	Auftrag Nr.	CRM-02960-19		Datum 12.09.2019
Probe Nr.			19-146749-01	19-146749-02	19-146749-03
Eingangsdatum			06.09.2019	06.09.2019	06.09.2019
Bezeichnung			B 19-1328-1 / MP Boden 1	B 19-1328-1 / MP Boden 2	B 19-1328-1 / MP Boden 3
Probenart			Boden	Boden	Boden
Probenahme durc	h		Auftraggeber	Auftraggeber	Auftraggeber
Probenmenge			1,76 kg	1,67 kg	1,65 kg
Probengefäß			Eimer	Eimer	Eimer
Anzahl Gefäße			1	1	1
Untersuchungsbe	ginn		06.09.2019	06.09.2019	06.09.2019
Untersuchungser	nde		12.09.2019	12.09.2019	12.09.2019

Probenvorbereitungsprotokoll nach DIN 19747

Probe Nr.		19-146749-01	19-146749-02	19-146749-03
Bezeichnung		B 19-1328-1 / MP Boden 1	B 19-1328-1 / MP Boden 2	B 19-1328-1 / MP Boden 3
Ordnungsgemäße Probenanlieferung		ja	ja	ja
Fremdbestandteile		nein	nein	nein
Anzahl der Prüfproben		2	2	2
Zerkleinerung		nein	nein	nein
Siebung	,	nein	nein	nein
homogenisierte Laborprobe		Frakt. Teilen	Frakt. Teilen	Frakt. Teilen
Rückstellprobe	g	1000	1000	1000
Lufttrocknung (40°C)		für TOC, Elemente	für TOC, Elemente	für TOC, Elemente
Trocknung (105°C)	-	für TS	für TS	für TS
Mahlen	,	für TOC, Elemente	für TOC, Elemente	für TOC, Elemente
Gesamtmasse der Originalprobe	g	1700	1700	1600

Anlage 6

WESSLING GmbH Rudolf-Diesel-Straße 23 · 64331 Weiterstadt www.wessling.de

Prüfbericht Nr. CRM19-008454-1	Auft	rag Nr.	CRM-02960-19		Datum 12.09.201 9
Probenvorbereitung					
Probe Nr.			19-146749-01	19-146749-02	19-146749-03
Bezeichnung		,	B 19-1328-1 / MP Boden 1	B 19-1328-1 / MP Boden 2	B 19-1328-1 / MP Boden 3
Homogenisierung			09.09.2019	09.09.2019	09.09.2019
Volumen des Auslaugungsmittel	ml	os	1000	1000	1000
Frischmasse der Messprobe	g	os	110,0	123,0	122,0
Königswasser-Extrakt		TS	10.09.2019	10.09.2019	10.09.2019
Feuchtegehalt	%	TS	8,9	20,2	19,5
Physikalische Untersuchung					•
Probe Nr.			19-146749-01	19-146749-02	19-146749-03
Bezeichnung	,		B 19-1328-1 / MP Boden 1	B 19-1328-1 / MP Boden 2	B 19-1328-1 / MP Boden 3
Trockenrückstand	Gew%	OS	91,9	83,2	83,7

Leichtflüchtige aromatische Kohlenwasserstoffe (BTEX)

Probe Nr.			19-146749-01	19-146749-02	19-146749-03		
Bezeichnung	•		B 19-1328-1 / MP	B 19-1328-1 / MP	B 19-1328-1 / MP		
			Boden 1	Boden 2	Boden 3		
Benzol	mg/kg	TS	<0,1	<0,1	<0,1		
Toluol	mg/kg	TS	<0,1	<0,1	<0,1		
Ethylbenzol	mg/kg	TS	<0,1	<0,1	<0,1		
m-, p-Xylol	mg/kg	TS	<0,1	<0,1	<0,1		
o-Xylol	mg/kg	TS	<0,1	<0,1	<0,1		
Styrol	mg/kg	TS	<0,1	<0,1	<0,1		
Cumol	mg/kg	TS	<0,1	<0,1	<0,1		
Summe nachgewiesener BTEX	mg/kg	TS	-/-	-/-	-/-		

Summenparameter

Probe Nr.			19-146749-01	19-146749-02	19-146749-03
Bezeichnung			B 19-1328-1 / MP	B 19-1328-1 / MP	B 19-1328-1 / MP
			Boden 1	Boden 2	Boden 3
Cyanid (CN), ges.	mg/kg	TS	<0,1	<0,1	<0,1
EOX	mg/kg	TS	<0,5	<0,5	<0,5
Kohlenwasserstoff-Index > C10-C22	mg/kg	TS	<50	<50	<50
Kohlenwasserstoff-Index	mg/kg	TS	<50	<50	<50
тос	Gew%	TS	0,32	0,11	0,22
TOC korrigiert	Gew%	TS	0,32	0,11	0,22
Störstoffe ges.	Gew%	TS	<0,1	<0,1	<0,1

Anlage 6

WESSLING GmbH Rudolf-Diesel-Straße 23 · 64331 Weiterstadt www.wessling.de

Prüfbericht Nr. CRM19-008454-1	Auft	rag Nr.	CRM-02960-19		Datum 12.09.2019
Polychlorierte Biphenyle (PCB)					
Probe Nr.			19-146749-01	19-146749-02	19-146749-03
Bezeichnung			B 19-1328-1 / MP Boden 1	B 19-1328-1 / MP Boden 2	B 19-1328-1 / MP Boden 3
PCB Nr. 28	mg/kg	TS	<0,01	<0,01	<0,01
PCB Nr. 52	mg/kg	TS	<0,01	<0,01	<0,01
PCB Nr. 101	mg/kg	TS	<0,01	<0,01	<0,01
PCB Nr. 118	mg/kg	TS	<0,01	<0,01	<0,01
PCB Nr. 138	mg/kg	TS	<0,01	<0,01	<0,01
PCB Nr. 153	mg/kg	TS	<0,01	<0,01	<0,01
PCB Nr. 180	mg/kg	TS	<0,01	<0,01	<0,01
Summe der 6 PCB	mg/kg	TS	-/-	-/-	-/-
PCB gesamt (Summe 6 PCB x 5)	mg/kg	TS	-/-	-/-	-/-
Summe der 7 PCB	mg/kg	TS	-/-	-/-	-/-

Leichtflüchtige halogenierte Kohlenwasserstoffe (LHKW)

Probe Nr.			19-146749-01	19-146749-02	19-146749-03
Bezeichnung	,		B 19-1328-1 / MP Boden 1	B 19-1328-1 / MP Boden 2	B 19-1328-1 / MP Boden 3
Dichlormethan	mg/kg	TS	<0,1	<0,1	<0,1
Tetrachlorethen	mg/kg	TS	<0,1	<0,1	<0,1
1,1,1-Trichlorethan	mg/kg	TS	<0,1	<0,1	<0,1
Tetrachlormethan	mg/kg	TS	<0,1	<0,1	<0,1
Trichlormethan	mg/kg	TS	<0,1	<0,1	<0,1
Trichlorethen	mg/kg	TS	<0,1	<0,1	<0,1
cis-1,2-Dichlorethen	mg/kg	TS	<0,1	<0,1	<0,1
Summe nachgewiesener LHKW	mg/kg	TS	-/-	-/-	-/-

Im Königswasser-Extrakt

Elemente

Probe Nr.			19-146749-01	19-146749-02	19-146749-03
Bezeichnung	3		B 19-1328-1 / MP Boden 1	B 19-1328-1 / MP Boden 2	B 19-1328-1 / MP Boden 3
Arsen (As)	mg/kg	TS	7,7	3,6	10
Blei (Pb)	mg/kg	TS	17	9,4	12
Cadmium (Cd)	mg/kg	TS	<0,4	<0,4	<0,4
Chrom (Cr)	mg/kg	TS	90	35	110
Kupfer (Cu)	mg/kg	TS	9,2	<5,0	11
Nickel (Ni)	mg/kg	TS	36	20	52
Thallium (TI)	mg/kg	TS	<0,4	0,52	<0,4
Zink (Zn)	mg/kg	TS	100	58	75
Quecksilber (Hg)	mg/kg	TS	<0,1	<0,1	<0,1

Anlage 6

WESSLING GmbH Rudolf-Diesel-Straße 23 · 64331 Weiterstadt www.wessling.de

Prüfbericht Nr. CF	RM19-008454-1	Aufti	rag Nr.	CRM-02960-19		Datum 12.09.2019
Polycyclische aron	natische Kohlenwasse	erstoffe	(PAK)			
Probe Nr.				19-146749-01	19-146749-02	19-146749-03
Bezeichnung	·			B 19-1328-1 / MP Boden 1	B 19-1328-1 / MP Boden 2	B 19-1328-1 / MP Boden 3
Naphthalin		mg/kg	TS	<0,02	<0,02	<0,02
Acenaphthylen		mg/kg	TS	<0,02	<0,02	<0,02
Acenaphthen		mg/kg	TS	<0,02	<0,02	<0,02
Fluoren		mg/kg	TS	<0,02	<0,02	<0,02
Phenanthren		mg/kg	TS	<0,02	<0,02	<0,02
Anthracen		mg/kg	TS	<0,02	<0,02	<0,02
Fluoranthen	,	mg/kg	TS	<0,02	<0,02	<0,02
Pyren		mg/kg	TS	<0,02	<0,02	<0,02
Benzo(a)anthrace	n I	mg/kg	TS	<0,02	<0,02	<0,02
Chrysen	,	mg/kg	TS	<0,02	<0,02	<0,02
Benzo(b)fluoranth	en	mg/kg	TS	<0,02	<0,02	<0,02
Benzo(k)fluoranth	en	mg/kg	TS	<0,02	<0,02	<0,02
Benzo(a)pyren		mg/kg	TS	<0,02	<0,02	<0,02
Dibenz(ah)anthrac	en	mg/kg	TS	<0,02	<0,02	<0,02
Indeno(1,2,3-cd)p	yren	mg/kg	TS	<0,02	<0,02	<0,02
Benzo(ghi)perylen	, 	mg/kg	TS	<0,02	<0,02	<0,02
Summe nachgewie		mg/kg	TS	-/-	-/-	-/-

Im Eluat

Physikalische Untersuchung

Probe Nr.			19-146749-01	19-146749-02	19-146749-03
Bezeichnung			B 19-1328-1 / MP Boden 1	B 19-1328-1 / MP Boden 2	B 19-1328-1 / MP Boden 3
pH-Wert		W/E	7,3	7,2	7,6
Messtemperatur pH-Wert	°C	W/E	23	23	23
Leitfähigkeit [25°C], elektrische	μS/cm	W/E	92,0	30,0	125

Kationen, Anionen und Nichtmetalle

Probe Nr.			19-146749-01	19-146749-02	19-146749-03
Bezeichnung			B 19-1328-1 / MP Boden 1	B 19-1328-1 / MP Boden 2	B 19-1328-1 / MP Boden 3
Chlorid (CI)	mg/l	W/E	<1,0	<1,0	<1,0
Cyanid (CN), ges.	mg/l	W/E	<0,005	<0,005	<0,005
Sulfat (SO4)	mg/l	W/E	1,3	1,2	1,2

Elemente

Probe Nr.			19-146749-01	19-146749-02	19-146749-03
Bezeichnung			B 19-1328-1 / MP Boden 1	B 19-1328-1 / MP Boden 2	B 19-1328-1 / MP Boden 3
Arsen (As)	μg/l	W/E	<5,0	<5,0	<5,0
Blei (Pb)	μg/l	W/E	<2,0	<2,0	<2,0

Seite 4 von 10

Anlage 6

WESSLING GmbH Rudolf-Diesel-Straße 23 · 64331 Weiterstadt www.wessling.de

Prüfbericht Nr.	CRM19-008454-1	Au	ftrag Nr.	CRM-02960-19		Datum 12.09.2019
Probe Nr.				19-146749-01	19-146749-02	19-146749-03
Cadmium (Cd)		μg/l	W/E	<0,2	<0,2	<0,2
Chrom (Cr)		 μg/l	W/E	<5,0	<5,0	<5,0
Kupfer (Cu)		 μg/l	W/E	<5,0	<5,0	<5,0
Nickel (Ni)		μg/l	W/E	<5,0	<5,0	<5,0
Quecksilber (H	lg)	 μg/l	W/E	<0,2	<0,2	<0,2
Thallium (TI)		μg/l	W/E	<0,2	<0,2	<0,2
Zink (Zn)		μg/l	W/E	<5,0	<5,0	8,9

Summenparameter

Probe Nr.			19-146749-01	19-146749-02	19-146749-03
Bezeichnung				B 19-1328-1 / MP Boden 2	B 19-1328-1 / MP Boden 3
Phenol-Index nach Destillation	µg/l	W/E	<10	<10	<10

Probe Nr.	19-146749-04
Eingangsdatum	06.09.2019
Bezeichnung	B 19-1328-1 / MP Boden 4
Probenart	Boden
Probenahme durch	Auftraggeber
Probenmenge	1,40 kg
Probengefäß	Eimer
Anzahl Gefäße	1
Untersuchungsbeginn	06.09.2019
Untersuchungsende	12.09.2019

Probenvorbereitungsprotokoll nach DIN 19747

Probe Nr.	19-146749-04
Bezeichnung	B 19-1328-1 / MP Boden 4
Ordnungsgemäße Probenanlieferung	ja
Fremdbestandteile	nein
Anzahl der Prüfproben	2
Zerkleinerung	nein
Siebung	nein
homogenisierte Laborprobe	Frakt. Teilen
Rückstellprobe g	1000
Lufttrocknung (40°C)	für TOC, Elemente
Trocknung (105°C)	für TS
Mahlen	für TOC, Elemente

Anlage 6

WESSLING GmbH Rudolf-Diesel-Straße 23 · 64331 Weiterstadt www.wessling.de

Prüfbericht Nr. CRM19-008454-1	Auft	rag Nr.	CRM-02960-19	
Probe Nr.			19-146749-04	7
Gesamtmasse der Originalprobe	g		1400	
Probenvorbereitung	,			_
Probe Nr.			19-146749-04	
Bezeichnung	•		B 19-1328-1 / MP Boden 4	
Homogenisierung	,		09.09.2019	1
Volumen des Auslaugungsmittel	ml	os	1000	1
Frischmasse der Messprobe	g	OS	116,0	7
Königswasser-Extrakt		TS	10.09.2019	
Feuchtegehalt	%	TS	14,3	
Physikalische Untersuchung				_
Probe Nr.			19-146749-04	7
Bezeichnung			B 19-1328-1 / MP Boden 4	
Trockenrückstand	Gew%	os	87,5	

Leichtflüchtige aromatische Kohlenwasserstoffe (BTEX)

5		•	,
Probe Nr.			19-146749-04
Bezeichnung			B 19-1328-1 / MP Boden 4
Benzol	mg/kg	TS	<0,1
Toluol	mg/kg	TS	<0,1
Ethylbenzol	mg/kg	TS	<0,1
m-, p-Xylol	mg/kg	TS	<0,1
o-Xylol	mg/kg	TS	<0,1
Styrol	mg/kg	TS	<0,1
Cumol	mg/kg	TS	<0,1
Summe nachgewiesener BTEX	mg/kg	TS	-/-

Summenparameter

Probe Nr.			19-146749-04
Bezeichnung			B 19-1328-1 / MP Boden 4
Cyanid (CN), ges.	mg/kg	TS	<0,1
EOX	mg/kg	TS	<0,5
Kohlenwasserstoff-Index > C10-C22	mg/kg	TS	<50
Kohlenwasserstoff-Index	mg/kg	TS	<50
тос	Gew%	TS	0,29
TOC korrigiert	Gew%	TS	0,29
Störstoffe ges.	Gew%	TS	<0,1

Anlage 6

WESSLING GmbH Rudolf-Diesel-Straße 23 · 64331 Weiterstadt www.wessling.de

Prüfbericht Nr.	CRM19-008454-1	Auft	rag Nr.	CRM-02960-19	Datum	12.0
Polychlorierte Bip	henyle (PCB)					
Probe Nr.				19-146749-04		
Bezeichnung				B 19-1328-1 / MP Boden 4		
PCB Nr. 28		mg/kg	TS	<0,01		
PCB Nr. 52		mg/kg	TS	<0,01		
PCB Nr. 101		mg/kg	TS	<0,01		
PCB Nr. 118		mg/kg	TS	<0,01		
PCB Nr. 138		mg/kg	TS	<0,01		
PCB Nr. 153		mg/kg	TS	<0,01		
PCB Nr. 180		mg/kg	TS	<0,01		
Summe der 6 PC	3	mg/kg	TS	-/-		
PCB gesamt (Sur	nme 6 PCB x 5)	mg/kg	TS	-/-		
Summe der 7 PCE	3	mg/kg	TS	-/-		

Leichtflüchtige halogenierte Kohlenwasserstoffe (LHKW)

Edicininaciningo maiogomorio itoliion	·· accordictor		·• <i>)</i>
Probe Nr.			19-146749-04
Bezeichnung	·	,	B 19-1328-1 / MP Boden 4
Dichlormethan	mg/kg	TS	<0,1
Tetrachlorethen	mg/kg	TS	<0,1
1,1,1-Trichlorethan	mg/kg	TS	<0,1
Tetrachlormethan	mg/kg	TS	<0,1
Trichlormethan	mg/kg	TS	<0,1
Trichlorethen	mg/kg	TS	<0,1
cis-1,2-Dichlorethen	mg/kg	TS	<0,1
Summe nachgewiesener LHKW	mg/kg	TS	-/-

Im Königswasser-Extrakt

Elemente

Probe Nr.			19-146749-04
Bezeichnung			B 19-1328-1 / MP Boden 4
Arsen (As)	mg/kg	TS	11
Blei (Pb)	mg/kg	TS	14
Cadmium (Cd)	mg/kg	TS	<0,4
Chrom (Cr)	mg/kg	TS	120
Kupfer (Cu)	mg/kg	TS	13
Nickel (Ni)	mg/kg	TS	51
Thallium (TI)	mg/kg	TS	0,52
Zink (Zn)	mg/kg	TS	110
Quecksilber (Hg)	mg/kg	TS	<0,1

Anlage 6

WESSLING GmbH Rudolf-Diesel-Straße 23 · 64331 Weiterstadt www.wessling.de

Prüfbericht Nr.	CRM19-008454-1	Auft	rag Nr.	CRM-02960-19	Datum	12.09.20
Polycyclische ar	omatische Kohlenwa	asserstoffe	(PAK)			
Probe Nr.				19-146749-04		
Bezeichnung				B 19-1328-1 / MP Boden 4		
Naphthalin		mg/kg	TS	<0,02		
Acenaphthylen		mg/kg	TS	<0,02		
Acenaphthen		mg/kg	TS	<0,02		
Fluoren		mg/kg	TS	<0,02		
Phenanthren		mg/kg	TS	<0,02		
Anthracen		mg/kg	TS	<0,02		
Fluoranthen		mg/kg	TS	<0,02		
Pyren		mg/kg	TS	<0,02		
Benzo(a)anthra	cen	mg/kg	TS	<0,02		
Chrysen		mg/kg	TS	<0,02		
Benzo(b)fluorar	then	mg/kg	TS	<0,02		
Benzo(k)fluoran	then	mg/kg	TS	<0,02		
Benzo(a)pyren		mg/kg	TS	<0,02		
Dibenz(ah)anthı	acen	mg/kg	TS	<0,02		
Indeno(1,2,3-cd)pyren	mg/kg	TS	<0,02		
Benzo(ghi)peryl	en	mg/kg	TS	<0,02		
Summe nachgev		mg/kg	TS	-/-		

Im Eluat

Physikalische Untersuchung

Probe Nr.			19-146749-04
Bezeichnung			B 19-1328-1 / MP Boden 4
pH-Wert	,	W/E	6,9
Messtemperatur pH-Wert	°C	W/E	23
Leitfähigkeit [25°C], elektrische	μS/cm	W/E	25,0

Kationen, Anionen und Nichtmetalle

Probe Nr.			19-146749-04
Bezeichnung			B 19-1328-1 / MP Boden 4
Chlorid (CI)	mg/l	W/E	2,2
Cyanid (CN), ges.	mg/l	W/E	<0,005
Sulfat (SO4)	mg/l	W/E	2,6

Elemente

Probe Nr.			19-146749-04
Bezeichnung			B 19-1328-1 / MP Boden 4
Arsen (As)	μg/l	W/E	<5,0
Blei (Pb)	µg/l	W/E	<2,0

Seite 8 von 10

Anlage 6

WESSLING GmbH Rudolf-Diesel-Straße 23 · 64331 Weiterstadt www.wessling.de

Prüfbericht Nr.	CRM19-008454-1	Aut	trag Nr.	CRM-02960-19	Datum 12.09. :
Probe Nr.				19-146749-04	
Cadmium (Cd)		μg/l	W/E	<0,2	
Chrom (Cr)		μg/l	W/E	<5,0	
Kupfer (Cu)		µg/l	W/E	<5,0	
Nickel (Ni)		μg/l	W/E	<5,0	
Quecksilber (H	g)	µg/l	W/E	<0,2	
Thallium (TI)		μg/l	W/E	<0,2	
Zink (Zn)		µg/l	W/E	5,4	
Summonnaram	notor	-			

Summenparameter

Probe Nr.			19-146749-04
Bezeichnung	,		B 19-1328-1 / MP Boden 4
Phenol-Index nach Destillation	μg/l	W/E	<10

19-146749-01

Eine parameterspezifische Analysenprobe zur Bestimmung leichtflüchtiger organischer Stoffe, d.h. eine mit Methanol überschichtete Stichprobe, ist nicht angeliefert worden. Minderbefunde der vorgenannten Stoffe können nicht ausgeschlossen werden. Ergänzend ist anzumerken, dass die Entnahme einer parameterspezifischen Analysenprobe in Abhängigkeit von der Körnigkeit des zu beprobenden Materials u.U. nicht möglich ist.

Abkürzungen	und	Methoden	1
-------------	-----	----------	---

Trockenrückstand/Wassergehalt in Abfällen	DIN EN 14346 Verf. A (2007-03) ^A
Probenvorbereitung DepV	DIN 19747 (2009-07) ^A
Homogenisierung	WES 092 (2005-07)
Kohlenwasserstoffe in Abfall (GC)	DIN EN 14039 (2005-01) ^A
Polycyclische aromatische Kohlenwasserstoffe (PAK)	DIN ISO 18287 (2006-05) ^A
Polychlorierte Biphenyle (PCB)	DIN EN 15308 (2008-05) ^A
LHKW (leichtfl. halogen. Kohlenwasserst.)	DIN EN ISO 10301 mod. (1997-08) ^A
BTEX (leichtfl. aromat. Kohlenwasserst.)	DIN ISO 22155 (2013-05) ^A
Extrahierbare organische Halogenverbindungen (EOX)	DIN 38414 S17 (2017-01) ^A
Königswasser-Extrakt vom Feststoff (Abfälle)	DIN EN 13657 (2003-01) ^Å
Cyanide gesamt und leichtfreisetzbar im Boden (CFA)	DIN ISO 17380 (2013-10) ^A
Gesamter organischer Kohlenstoff (TOC) in Abfall	DIN EN 13137 (2001-12) ^A
Auslaugung, Schüttelverfahren W/F-10 I/kg	DIN EN 12457-4 (2003-01) ^A
pH-Wert in Wasser/Eluat	DIN 38404-5 (2009-07) ^A
Gelöste Anionen, Chlorid in Wasser/Eluat	DIN EN ISO 10304-1 (2009-07) ^A
Leitfähigkeit, elektrisch	DIN EN 27888 (1993-11) ^Å
Gelöste Anionen, Sulfat in Wasser/Eluat	DIN EN ISO 10304-1 (2009-07) ^A
Cyanide gesamt	DIN EN ISO 14403-2 (2012-10) ^A
Phenol-Index in Wasser/Eluat	DIN EN ISO 14402 (H 37) (1999-12) ^A
Metalle/Elemente in Feststoff	DIN EN ISO 17294-2 (2005-02) ^A
Metalle/Elemente in Wasser/Eluat	DIN EN ISO 17294-2 (2005-02) ^Å
Feuchtegehalt	DIN EN 12457-4 (2003-01) ^A
Quecksilber (AAS) in Feststoff	DIN EN ISO 12846 (2012-08) ^A

ausführender Standort

Umweltanalytik Walldorf Umweltanalytik Walldorf Umweltanalytik Walldorf Umweltanalytik Walldorf Umweltanalytik Walldorf Umweltanalytik Walldorf Umweltanalytik Rhein-Main Umweltanalytik Rhein-Main Umweltanalytik Walldorf Umweltanalytik Walldorf Umweltanalytik Walldorf Umweltanalytik Walldorf Umweltanalytik Walldorf Umweltanalytik Rhein-Main Umweltanalytik Rhein-Main Umweltanalytik Rhein-Main Umweltanalytik Rhein-Main Umweltanalytik Rhein-Main Umweltanalytik Rhein-Main Umweltanalytik Walldorf Umweltanalytik Rhein-Main Umweltanalytik Walldorf Umweltanalytik Walldorf

Originalsubstanz

Seite 9 von 10

os

Anlage 6

WESSLING GmbH Rudolf-Diesel-Straße 23 · 64331 Weiterstadt www.wessling.de

Prüfbericht Nr.	CRM19-008454-1	Auftrag Nr.	CRM-02960-19	Datum 12.09.2019
TS		Trockensubstanz		
W/E		Wasser/Eluat		

i.A.

Mehdi Javan Dipl.-Ing. Chemie

Sachverständiger Umwelt

							igslehmböden - E			Sud			Anlage: Probe:			MP Boden		
Projekt: Untersu	64372 Ober-r		Bei	urteilung zur t Jemäß Merkbla RP Darr	echnischen V	erwertung vor ig von Bauabf i und Kassel		Beurteilun suchungen in Bodenmaterial gemäß Merkbl RP Dar	n Hinblick auf in bodenähnl		Beurteilung der abfallrechtlichen Untersuchungen im Hinblick auf die Verwertung von Bodenmaterial nach Anhang 2 Nr. 4.1 BBodSchV Vorsorgewerte für durchwurzelbare Bodenschichten							
Parameter	Einheit	Ergebnis	Zuordnungswerte Boden gemäß Baumerkblatt Anhang 1 Tabellen 1.2 und 1.3 gebnis Z 1 Z 2				Bewertung	,	Anhang 1 Tabe maßg Bod Lehm/	erkblatt ellen 1.1 und 1 ebende lenart 'Schluff	.3	Bewertung	Vors	pezifische Vorso nach BBodSchV Lehm/Schluff sorgewerte / (70	~ %) 	Bewertung		
			Z	1				2	20		0*		Ton	Schluff	Sand Feststoffana			
	M 0'	0.00	1,	5	Feststoffana	iyse 5	7.4		(4 o) 1)	Feststoffana		7.0			resistoriana	iyə c		
FOC	Masse-% mg/kg	0,32 < 0,5	1,			10	Z 1 Z 1	0,5	1,0) "	0,5	1,0) "	Z 0 Z 0	1 / (0,7)	1 / (0,7)	1 / (0,7)	eingehalten		
IKW C ₁₀ - C ₄₀	mg/kg mg/kg	< 0,5 < 50	60			000	Z 1	1	00		00	Z 0	17 (0,7)	17 (0,7)	17 (0,7)	eingenalten eingehalten		
IKW C ₁₀ - C ₂₂	mg/kg	< 50	30			000	Z 1		-		00	Z 0	-	-	-	-		
AK 16	mg/kg	n.n.	3 (9	9) ³⁾	:	30	Z 1		3		3	Z 0	3 / (2)5)	3 / (2)5)	3 / (2)5)	eingehalten		
enzo(a)pyren	mg/kg	< 0,02	0,	,9		3	Z 1	(),3	(),6	Z 0	0,3 / (0,2)5)	0,3 / (0,2)5)	0,3 / (0,2)5)	eingehalten		
aphthalin	mg/kg	< 0,02	-				Z 1		-		-	Z 0	-	-	-	-		
TEX	mg/kg	n.n.	1			1	Z 1	1			1	Z 0	1 / (0,7)	1 / (0,7)	1 / (0,7)	eingehalten		
HKW	mg/kg	n.n.	1			1	Z 1	1			1	Z 0	1 / (0,7)	1 / (0,7)	1 / (0,7)	eingehalten		
CB rsen	mg/kg	n.n. 7,7	0,1			,5 50	Z 1 Z 1	0,05			0,1 15	Z 0 Z 0	0,05 / (0,03) ⁵⁾ 20 / (14)	0,05 / (0,03) ⁵⁾ 15 / (11)	0,05 / (0,03) ⁵⁾ 10 / (7)	eingehalten eingehalten		
rsen lei	mg/kg mg/kg	17	21			00	Z 1		15 70		140		100 / (70)	70 / (49)	40 / (28)	eingenaiten eingehalten		
admium	mg/kg	< 0,4	3			0	Z 1		1	<u>'</u>	1	Z 0 Z 0	1,5 / (1)	1 / (0,7)	0,4 / (0,3)	eingehalten		
hrom	mg/kg	90	18			00	Z 1		50	1	20	Z 0*	100 / (70)	60 / (42)	30 / (21)	überschritten		
upfer	mg/kg	9,2	12	20	4	00	Z 1		40		30	Z 0	60 / (42)	40 / (28)	20 / (14)	eingehalten		
lickel	mg/kg	36	15	50	5	00	Z 1	:	50	1	00	Z 0	70 / (49)	50 / (35)	15 / (10,5)	überschritten		
Quecksilber	mg/kg	< 0,1	1,			5	Z 1),5		1	Z 0	1 / (0,7)	0,5 / (0,35)	0,1 / (0,07)	eingehalten		
Thallium	mg/kg	< 0,4	2,			•	Z 1),7),7	Z 0	1 / (0,7)	0,7 / (0,49)	0,4 / (0,28)	eingehalten		
Zink	mg/kg	100	45			500	Z 1	1	50	3	00	Z 0	200 / (140)	150 / (105)	60 / (42)	eingehalten		
Cyanide, ges.	mg/kg	< 0,1	3	3		0	-		1		-	Z 0	5 / (3,5)	5 / (3,5)	5 / (3,5)	eingehalten		
					Eluatanaly					Eluatanaly					Eluatanaly	se		
			Z 0	Z 1.1	Z 1.2	Z 2		Z 0	Z 1.1	Z 1.2	Z 2							
H-Wert eitfähigkeit		7,3 92	6,5 - 9 500	6,5 - 9 500	6 - 12 1.000	5,5 - 12 1.500	Z 0 Z 0	6,5 - 9 500	6,5 - 9 500	6 - 12 1.000	5,5 - 12 1.500	Z 0 Z 0	-	-	-	-		
entranigken Chlorid	μS/cm mg/l	92 < 1	10	10	20	30	Z 0	10	10	20	30	Z 0	30 / (21)	30 / (21)	30 / (21)	eingehalten		
Sulfat	mg/l	1,3	50	50	100	150	Z 0	50	50	100	150	Z 0	20 / (14)	20 / (14)	20 / (14)	eingehalten		
Syanide	μg/l	< 5	< 10	10	50	100	Z 0	< 10	10	50	100	Z 0	5 / (3,5)	5 / (3,5)	5 / (3,5)	eingehalten		
rsen	μg/l	< 5	10	10	40	60	Z 0	10	10	40	60	Z 0	-	-	-	-		
lei	μg/I	< 2	20	40	100	200	Z 0	20	40	100	200	Z 0	-	-	-	-		
admium	μg/l	< 0,2	2	2	5	10	Z 0	2	2	5	10	Z 0	-	-	-	-		
hrom	μg/l	< 5	15	30	75	150	Z 0	15	30	75	150	Z 0	-	-	-	-		
upfer ickel	μg/l	< 5 < 5	50 40	50 50	150 150	300 200	Z 0 Z 0	50 40	50 50	150 150	300 200	Z 0 Z 0	-	-	-			
uecksilber	μg/l μg/l	< 0,2	0,2	0,2	150	200	Z 0	0,2	0,2	150	200	Z 0	-	-		-		
hallium	μg/l	< 0,2	< 1	1	3	5	Z 0	< 1	1	3	5	Z 0						
ink	μg/l	< 5	100	100	300	600	Z 0	100	100	300	600	Z 0	-	-	-	-		
henolindex	μg/l	< 10	< 10	10	50	100	Z 0	< 10	10	50	100	Z 0	20 / (14)	20 / (14)	20 / (14)	eingehalten		
Gutachterlich	ne Gesamtbe	wertung					Z 0					Z 0*	Die Vorsorgewerte nach BBodSchV werd überschritten					

P Bei einem C:N-Verhältnis > 25 beträgt der Zuordnungswert 1 Masse-%. Zudem ist die festgestellte Überschreitung des TOC-Wertes als nicht einstufungsrelevant zu beurteilen.

²⁾ Bei Überschreitungen ist die Ursache zu prüfen

³⁾ Bodenmaterial mit Zuordnungswerten > 3 mg/kg und ≤ 9 mg/kg sollte nur in Gebieten mit hydrogeologisch günstigen Deckschichten eingebaut werden. Einstufung in die Einbauklasse Z 1 sofern in Gebieten mit hydrogeologisch ungünstigen Deckschichten, Einstufung in die Einbauklasse Z 2, sofern in Gebieten mit hydrogeologisch günstigen Deckschichten verwertet werden soll.

⁴⁾ Überschreitung des Parameters C₁₀ - C₄₀ die auf teerfreie Asphaltaufbruchanteile zurückgeführt werden können sind, aus umwelttechnischer Sicht, als unproblematisch zu beurteilen.

⁵⁾ Humusgehalt des Bodens kleiner 8 %

Tabelle A8 - E							Conzept, Odenwald		n & Sün				Anlage: Probe:			MP Boden		
	chungsergebniss		Bei	urteilung zur t Jemäß Merkbla RP Darr	echnischen V	erwertung vor ig von Bauabf i und Kassel	n Boden	n" Bodenmaterial in bodenähnlichen Anwendungen an gemäß Merkblatt "Entsorgung von Bauabfällen"								der abfallrechtlichen Untersuchungen im Hinblick auf die Verwertung von Bodenmaterial nach Anhang 2 Nr. 4.1 BBodSchV gewerte für durchwurzelbare Bodenschichten		
Parameter	Einheit	Ergebnis	Zuordnungswerte Boden gemäß Baumerkblatt Anhang 1 Tabellen 1.2 und 1.3 Bewertung			,	spezifische Zu Baume Anhang 1 Tabe maßge Bod Lehm/	uordnungswe erkblatt ellen 1.1 und 1 ebende lenart (Schluff	rte gemäß	Bewertung	Vors	pezifische Vorso nach BBodSchV Lehm/Schluff sorgewerte / (70	~ %) 	Bewertung				
			Z	1				2	20		0*		Ton	Schluff	Sand Feststoffana	h		
	1 14 01	0.11	1,	5	Feststoffana	iyse 5	7.4		(4 o) 1)	Feststoffana	-	7.0			resistoriana	iyə c		
OC OX	Masse-% mg/kg	0,11 < 0,5	3			10	Z 1 Z 1	0,5	1	0,5	(1,0) ''	Z 0 Z 0	1 / (0,7)	1 / (0,7)	1 / (0,7)	eingehalten		
1KW C ₁₀ - C ₄₀	mg/kg	< 50	60			000	Z 1	1	00		.00	Z 0	100 / (70)	100 / (70)	100 / (70)	eingehalten		
IKW C ₁₀ - C ₂₂	mg/kg	< 50	30			000	Z 1		-		100	Z 0	-	-	-	-		
AK ₁₆	mg/kg	n.n.	3 (9	9) ³⁾	:	30	Z 1		3		3	Z 0	3 / (2) ⁵⁾	3 / (2)5)	3 / (2)5)	eingehalten		
enzo(a)pyren	mg/kg	< 0,02	0,	,9		3	Z 1	(),3	(),6	Z 0 Z 0	0,3 / (0,2)5)	0,3 / (0,2)5)	0,3 / (0,2)5)	eingehalten		
aphthalin	mg/kg	< 0,02	-				Z 1		-		- 1		-	-	-	-		
ΓEX	mg/kg	n.n.	1			1	Z 1	1			•	Z 0	1 / (0,7)	1 / (0,7)	1 / (0,7)	eingehalten		
HKW CB	mg/kg	n.n.	0,			1,5	Z 1 Z 1	1 0.05			<u>1</u> 0,1	Z 0 Z 0	1 / (0,7)	1 / (0,7)	1 / (0,7)	eingehalten		
rsen	mg/kg mg/kg	n.n. 3,6	4			50	Z 1	0,05 15			15	Z 0	0,05 / (0,03) ⁵⁾ 20 / (14)	0,05 / (0,03) ⁵⁾ 15 / (11)	0,05 / (0,03) ⁵⁾ 10 / (7)	eingehalten eingehalten		
lei	mg/kg	9,4	21			00	Z 1		70	140		Z 0	100 / (70)	70 / (49)	40 / (28)	eingehalten		
admium	mg/kg	< 0,4	3			0	Z 1		1		1	Z 0	1,5 / (1)	1 / (0,7)	0,4 / (0,3)	eingehalten		
hrom	mg/kg	35	18			00	Z 1		60	1	20	Z 0	100 / (70)	60 / (42)	30 / (21)	eingehalten		
upfer	mg/kg	< 5	12	20	4	00	Z 1		40		80	Z 0	60 / (42)	40 / (28)	20 / (14)	eingehalten		
lickel	mg/kg	20		50		00	Z 1		50		00	Z 0	70 / (49)	50 / (35)	15 / (10,5)	eingehalten		
Quecksilber	mg/kg	< 0,1	1,			5	Z 1		0,5		1	Z 0	1 / (0,7)	0,5 / (0,35)	0,1 / (0,07)	eingehalten		
Thallium ⁷ ink	mg/kg	0,52	2, 45			7 500	Z 1 Z 1		50		0,7	Z 0 Z 0	1 / (0,7) 200 / (140)	0,7 / (0,49)	0,4 / (0,28)	überschritten		
ink Syanide, ges.	mg/kg mg/kg	< 0,1	45			0	Z 1	-	1	3	-	Z 0	5 / (3,5)	150 / (105) 5 / (3,5)	60 / (42) 5 / (3,5)	eingehalten eingehalten		
yanue, ges.	ilig/kg	< 0,1	·	,	Eluatanaly					Eluatanaly	180	20	37 (3,3)	37 (3,3)	Eluatanaly	•		
			Z 0	Z 1.1	Z 1.2	Z 2		Z 0	Z 1.1	Z 1.2	Z2	1			Liudiunuiy			
H-Wert	- 1	7,2	6,5 - 9	6,5 - 9	6 - 12	5,5 - 12	Z 0	6,5 - 9	6,5 - 9	6 - 12	5,5 - 12	Z 0	-	-	-	-		
eitfähigkeit	μS/cm	30	500	500	1.000	1.500	Z 0	500	500	1.000	1.500	Z 0	-	-	-	-		
nlorid	mg/l	< 1	10	10	20	30	Z 0	10	10	20	30	Z 0	30 / (21)	30 / (21)	30 / (21)	eingehalten		
ılfat	mg/l	1,2	50	50	100	150	Z 0	50	50	100	150	Z 0	20 / (14)	20 / (14)	20 / (14)	eingehalten		
yanide	μg/l	< 5	< 10	10	50	100	Z 0	< 10	10	50	100	Z 0	5 / (3,5)	5 / (3,5)	5 / (3,5)	eingehalten		
sen ei	μg/l	< 5 < 2	10 20	10 40	40 100	60 200	Z 0 Z 0	10 20	10 40	40 100	60 200	Z 0 Z 0	-	-	-			
ei admium	μg/l μg/l	< 0,2	20	2	5	10	Z 0	20	2	5	10	Z 0		-		-		
nrom	μg/l	< 5	15	30	75	150	Z 0	15	30	75	150	Z 0	-	-	-	-		
pfer	μg/l	< 5	50	50	150	300	Z 0	50	50	150	300	Z 0	-	-	-	-		
ckel	μg/l	< 5	40	50	150	200	Z 0	40	50	150	200	Z 0	-	-	-	-		
uecksilber	μg/l	< 0,2	0,2	0,2	1	2	Z 0	0,2	0,2	1	2	Z 0	-	-	-	-		
nallium	μg/l	< 0,2 < 5	< 1 100	100	300	5 600	Z 0 Z 0	< 1 100	100	300	5 600	Z 0 Z 0						
nk nenolindex	μg/l μg/l	< 5 < 10	100 < 10	100	300 50	100	Z 0 Z 0	100 < 10	100	300 50	100	Z 0 Z 0	20 / (14)	20 / (14)	20 / (14)	eingehalten		
Gutachterlich					30	100	Z 0		10	- 50	100	Z 0	Die Vorsorgewerte nach BBodSchV werden überschritten					

⁹ Bei einem C:N-Verhältnis > 25 beträgt der Zuordnungswert 1 Masse-%. Zudem ist die festgestellte Überschreitung des TOC-Wertes als nicht einstufungsrelevant zu beurteilen.

²⁾ Bei Überschreitungen ist die Ursache zu prüfen

³⁾ Bodenmaterial mit Zuordnungswerten > 3 mg/kg und ≤ 9 mg/kg sollte nur in Gebieten mit hydrogeologisch günstigen Deckschichten eingebaut werden. Einstufung in die Einbauklasse Z 1 sofern in Gebieten mit hydrogeologisch ungünstigen Deckschichten, Einstufung in die Einbauklasse Z 2, sofern in Gebieten mit hydrogeologisch günstigen Deckschichten verwertet werden soll.

⁴⁾ Überschreitung des Parameters C₁₀ - C₄₀ die auf teerfreie Asphaltaufbruchanteile zurückgeführt werden können sind, aus umwelttechnischer Sicht, als unproblematisch zu beurteilen.

⁵⁾ Humusgehalt des Bodens kleiner 8 %

Projekt:	64372 Ober-F	Jmweltanalytik - E Ramstadt (Modau					onzept, Odenwald	dstraße NOR					Probe:			MP Boden			
	chungsergebniss	se		jemäß Merkbla RP Darr				" Bodenmaterial in bodenähnlichen Anwendungen gemäß Merkblatt "Entsorgung von Bauabfällen"								eurteilung der abfallrechtlichen Untersuchungen im Hinblick auf die Verwertung von Bodenmaterial nach Anhang 2 Nr. 4.1 BBodSchV Vorsorgewerte für durchwurzelbare Bodenschichten			
Parameter	Einheit	Ergebnis		ordnungswert Baume nhang 1 Tabe	rkblatt		Bewertung	bodenartspezifische Zuordnungswerte g Baumerkblatt Anhang 1 Tabellen 1.1 und 1.3		ŭ	Bewertung	bodenarts _i n Vors	Bewertung						
			z	1	Z	2		2	Z 0	Z	0*		Ton	Schluff	Sand				
					Feststoffana	lyse				Feststoffana	ilyse				Feststoffana	yse			
TOC	Masse-%	0,22	1,	,5		5	Z 1	0,5	(1,0) 1)	0,5 (1,0) 1)	Z 0	-	-	-	-			
OX	mg/kg	< 0,5	3			10	Z 1		1		2)	Z 0	1 / (0,7)	1 / (0,7)	1 / (0,7)	eingehalten			
IKW C ₁₀ - C ₄₀	mg/kg	< 50	60			000	Z 1	1	100		00	Z 0	100 / (70)	100 / (70)	100 / (70)	eingehalten			
KW C ₁₀ - C ₂₂	mg/kg	< 50	30			000	Z 1		3		00 3	Z 0		5)	-	eingehalten			
AK 16 enzo(a)pyren	mg/kg	n.n. < 0.02	3 (9			3	Z 1 Z 1),6	Z 0 Z 0	3 / (2) ⁵⁾ 0,3 / (0,2) ⁵⁾	3 / (2) ⁵⁾ 0,3 / (0,2) ⁵⁾	3 / (2) ⁵⁾ 0,3 / (0,2) ⁵⁾	eingenaiten eingehalten			
aphthalin	mg/kg mg/kg	< 0,02	0,			-	Z 1	,	0,3		-		- 20		0,3 / (0,2) /	0,3 / (0,2) -	0,3 / (0,2)	enigerialien	
TEX	mg/kg	n.n.	1			1	Z 1	1			1	Z 0	1 / (0,7)	1 / (0,7)	1 / (0,7)	eingehalten			
HKW	mg/kg	n.n.	1	1		1	Z 1	1			1	Z 0	1 / (0,7)	1 / (0,7)	1 / (0,7)	eingehalten			
СВ	mg/kg	n.n.	0,1	15	0	,5	Z 1	0,05		C),1	Z 0	0,05 / (0,03)5)	0,05 / (0,03)5)	0,05 / (0,03)5)	eingehalten			
rsen	mg/kg	10	4:			50	Z 1	15			15	Z 0	20 / (14)	15 / (11)	10 / (7)	eingehalten			
Blei	mg/kg	12	21			00	Z 1		70		40	Z 0	100 / (70)	70 / (49)	40 / (28)	eingehalten			
Cadmium	mg/kg	< 0,4	3			0	Z 1		1	1 120		Z 0	1,5 / (1)	1 / (0,7)	0,4 / (0,3)	eingehalten			
Chrom	mg/kg	110	18			00	Z 1		60			Z 0*	100 / (70)	60 / (42)	30 / (21)	überschritten			
Kupfer Nickel	mg/kg mg/kg	11 52	12			00	Z 1 Z 1		40 50		00	Z 0*	60 / (42) 70 / (49)	40 / (28) 50 / (35)	20 / (14) 15 / (10,5)	eingehalten überschritten			
Quecksilber	mg/kg	< 0,1	1,			5	Z 1		0,5		1	Z 0	1 / (0,7)	0,5 / (0,35)	0,1 / (0,07)	eingehalten			
Thallium	mg/kg	< 0,4	2,				Z 1		0,7),7	Z 0	1 / (0,7)	0,7 / (0,49)	0,4 / (0,28)	eingehalten			
Zink	mg/kg	75	45		1.5	500	Z 1		150		00	Z 0	200 / (140)	150 / (105)	60 / (42)	eingehalten			
Cyanide, ges.	mg/kg	< 0,1	3	3	1	0	-		1		-	Z 0	5 / (3,5)	5 / (3,5)	5 / (3,5)	eingehalten			
					Eluatanalys	se				Eluatanaly	se				Eluatanaly	se .			
			Z 0	Z 1.1	Z 1.2	Z 2		Z 0	Z 1.1	Z 1.2	Z 2								
H-Wert	-	7,6	6,5 - 9	6,5 - 9	6 - 12	5,5 - 12	Z 0	6,5 - 9	6,5 - 9	6 - 12	5,5 - 12	Z 0	-	-	-	-			
eitfähigkeit	μS/cm	125	500	500	1.000	1.500	Z 0	500	500	1.000	1.500	Z 0	-	-	-	-			
hlorid	mg/l	< 1	10	10	20	30	Z 0	10	10	20	30	Z 0	30 / (21)	30 / (21)	30 / (21)	eingehalten			
ulfat	mg/l	1,2	50	50	100	150	Z 0	50	50	100	150	Z 0	20 / (14)	20 / (14)	20 / (14)	eingehalten			
yanide	μg/l	< 5 < 5	< 10 10	10 10	50 40	100 60	Z 0 Z 0	< 10 10	10	50 40	100 60	Z 0 Z 0	5 / (3,5)	5 / (3,5)	5 / (3,5)	eingehalten			
rsen ilei	μg/l μg/l	< 5 < 2	10 20	10 40	100	60 200	Z 0 Z 0	10 20	40	100	200	Z 0 Z 0	-	-	-	•			
admium	µд/I	< 0,2	20	2	5	10	Z 0	20	2	5	10	Z 0	-	-	-				
hrom	μg/l	< 5	15	30	75	150	Z 0	15	30	75	150	Z 0	-	-	-	-			
upfer	μg/l	< 5	50	50	150	300	Z 0	50	50	150	300	Z 0	-	-	-	-			
ckel	μg/l	< 5	40	50	150	200	Z 0	40	50	150	200	Z 0	-	-	-	-			
uecksilber	μg/l	< 0,2	0,2	0,2	1	2	Z 0	0,2	0,2	1	2	Z 0	-	-	-	-			
hallium	μg/l	< 0,2	< 1	1	3	5	Z 0	< 1	1	3	5	Z 0							
ink	μg/l	8,9	100	100	300	600	Z 0	100	100	300	600	Z 0	-	-		ale est etc.			
Phenolindex	μg/I	< 10	< 10	10	50	100	Z 0	< 10	10	50	100	Z 0	20 / (14)	20 / (14)	20 / (14)	eingehalten			
Gutachterlich	ne Gesamtbe	ewertung					Z 0					Z 0*		Die Vorsorg	ewerte nach E überschrit	BodSchV werden			

Pei einem C:N-Verhältnis > 25 beträgt der Zuordnungswert 1 Masse-%. Zudem ist die festgestellte Überschreitung des TOC-Wertes als nicht einstufungsrelevant zu beurteilen.

²⁾ Bei Überschreitungen ist die Ursache zu prüfen

³) Bodenmaterial mit Zuordnungswerten > 3 mg/kg und ≤ 9 mg/kg sollte nur in Gebieten mit hydrogeologisch g\u00fcnstigen Deckschichten eingebaut werden. Einstufung in die Einbauklasse Z 1 sofem in Gebieten mit hydrogeologisch ung\u00fcnstigen Deckschichten, Einstufung in die Einbauklasse Z 2, sofem in Gebieten mit hydrogeologisch g\u00fcnstigen Deckschichten verwertet werden soll.

⁴⁾ Überschreitung des Parameters C₁₀ - C₄₀ die auf teerfreie Asphaltaufbruchanteile zurückgeführt werden k\u00f6nnen sind, aus umwelttechnischer Sicht, als unproblematisch zu beurteilen.

⁵⁾ Humusgehalt des Bodens kleiner 8 %

Tabelle A10													Anlage:			1		
Projekt:	64372 Ober-F	Ramstadt (Modau) - Errichtung e	einer Wohnbe	bauung, Städ	Itebauliches K	Conzept, Odenwald	dstraße NORI	O & SÜD				Probe:			MP Boden		
Untersu	chungsergebnis	se	Bei g		echnischen Vo tt "Entsorgun nstadt, Gießer 1.09.2018 (Bau	ig von Bauabf n und Kassel	n Boden ällen"	E	suchungen im Bodenmaterial gemäß Merkbla RP Dari	in bodenähnli	die Verwertun ichen Anwend ng von Bauab n und Kassel	g von lungen	Вец	auf die ' nach	Verwertung von Anhang 2 Nr. 4.1			
Parameter	Einheit	Ergebnis		ordnungsweri Baume Inhang 1 Tabe	rkblatt	emäß bodenartspezifische Zuordni			erkblatt ellen 1.1 und 1. ebende enart	_	Bewertung	n	pezifische Vorso ach BBodSchV Lehm/Schluff corgewerte / (70	Bewertung				
			z	1		2		Z	0	Z			Ton	Schluff	Sand			
					Feststoffanal	lyse				Feststoffana	lyse				Feststoffana	yse		
TOC	Masse-%	0,29		,5	,		Z 1	0,5 (1,0) 1)	0,5 (Z 0	-	-	-	-		
EOX	mg/kg	< 0,5	3			10	Z 1		1		2)	Z 0	1 / (0,7)	1 / (0,7)	1 / (0,7)	eingehalten		
MKW C ₁₀ - C ₄₀	mg/kg	< 50	60			000	Z 1	1	00		00	Z 0	100 / (70)	100 / (70)	100 / (70)	eingehalten		
MKW C ₁₀ - C ₂₂	mg/kg mg/kg	< 50 n.n.	30			000	Z 1 Z 1		3	2	3	Z 0 Z 0	3 / (2) ⁵⁾	3 / (2) ⁵⁾	3 / (2) ⁵⁾	eingehalten		
enzo(a)pyren	mg/kg	< 0,02	0,				Z 1		1,3		,6	Z 0	0,3 / (0,2)5)	0,3 / (0,2) ⁵⁾	0,3 / (0,2) ⁵⁾	eingehalten		
laphthalin	mg/kg	< 0,02	-	-		-	Z 1		-	-		-		Z 0	-	-	-	-
TEX	mg/kg	n.n.	1	1		1	Z 1	1		1		Z 0	1 / (0,7)	1 / (0,7)	1 / (0,7)	eingehalten		
HKW	mg/kg	n.n.	1	1		1	Z 1	1			1	Z 0	1 / (0,7)	1 / (0,7)	1 / (0,7)	eingehalten		
PCB	mg/kg	n.n.	0,1	15	0	,5	Z 1	0,05		0	,1	Z 0	0,05 / (0,03)5)	0,05 / (0,03)5)	0,05 / (0,03)5)	eingehalten		
rsen	mg/kg	11	4	5	15	50	Z 1	1	15	15		Z 0	20 / (14)	15 / (11)	10 / (7)	eingehalten		
Blei	mg/kg	14	21	10	70	00	Z 1	7	70	140		Z 0	100 / (70)	70 / (49)	40 / (28)	eingehalten		
Cadmium	mg/kg	< 0,4	3			0	Z 1		1			Z 0	1,5 / (1)	1 / (0,7)	0,4 / (0,3)	eingehalten		
Chrom	mg/kg	120	18			00	Z 1		60		20	Z 0*	100 / (70)	60 / (42)	30 / (21)	überschritten		
Kupfer	mg/kg	13	12			00	Z 1		10		80	Z 0	60 / (42)	40 / (28)	20 / (14)	eingehalten		
Nickel	mg/kg	51	15			00	Z 1		50		00	Z 0*	70 / (49)	50 / (35)	15 / (10,5)	überschritten		
Quecksilber	mg/kg	< 0,1	1,				Z 1		,5		•	Z 0	1 / (0,7)	0,5 / (0,35)	0,1 / (0,07)	eingehalten		
Thallium Zink	mg/kg	0,52 110	2, 45			7 500	Z 1 Z 1		50		,7 00	Z 0 Z 0	1 / (0,7) 200 / (140)	0,7 / (0,49)	0,4 / (0,28)	überschritten		
Cyanide, ges.	mg/kg mg/kg	< 0,1	40			0	21		1	31	50	Z 0	5 / (3,5)	150 / (105) 5 / (3,5)	60 / (42) 5 / (3,5)	überschritten eingehalten		
Syamue, ges.	ilig/kg	< 0,1	3	,	Eluatanalys		-			Eluatanaly	-	20	37 (3,3)	37 (3,3)	Eluatanalys			
			7.0	744				7.0	744			ı			Eluatarialy	Se .		
H-Wert		6,9	Z 0 6.5 - 9	Z 1.1 6.5 - 9	Z 1.2 6 - 12	Z 2 5,5 - 12	Z 0	Z 0 6.5 - 9	Z 1.1 6.5 - 9	Z 1.2 6 - 12	Z 2 5.5 - 12	Z 0		_				
eitfähigkeit	uS/cm	25	500	500	1.000	1.500	Z 0	500	500	1.000	1.500	Z 0				-		
hlorid	mg/l	2,2	10	10	20	30	Z 0	10	10	20	30	Z 0	30 / (21)	30 / (21)	30 / (21)	eingehalten		
ulfat	mg/l	2,6	50	50	100	150	Z 0	50	50	100	150	Z 0	20 / (14)	20 / (14)	20 / (14)	eingehalten		
yanide	μg/l	< 5	< 10	10	50	100	Z 0	< 10	10	50	100	Z 0	5 / (3,5)	5 / (3,5)	5 / (3,5)	eingehalten		
rsen	μg/l	< 5	10	10	40	60	Z 0	10	10	40	60	Z 0	-	-	-	-		
lei	μg/l	< 2	20	40	100	200	Z 0	20	40	100	200	Z 0	-	-	-	-		
admium	μg/l	< 0,2	2	2	5	10	Z 0	2	2	5	10	Z 0	-	-	-	-		
hrom	μg/l	< 5	15	30	75	150	Z 0	15	30	75	150	Z 0	-	-	-	-		
upfer	μg/l	< 5	50	50	150	300	Z 0	50	50	150	300	Z 0	-	-	-	-		
ckel uecksilber	μg/l	< 5 < 0,2	40 0,2	50 0,2	150 1	200	Z 0 Z 0	40 0,2	50 0,2	150	200	Z 0 Z 0	-	-	-	-		
nallium	μg/l μg/l	< 0,2	< 1	1	3	5	Z 0	<1	1	3	5	Z 0			-	•		
nk	дд/I	5,4	100	100	300	600	Z 0	100	100	300	600	Z 0	-	-	_	-		
henolindex	μg/I	< 10	< 10	10	50	100	Z 0	< 10	100	500	100	Z 0	20 / (14)	20 / (14)	20 / (14)	eingehalten		
Gutachterlich	, .,			•			Z 0					Z 0*				BodSchV werden		

⁹ Bei einem C:N-Verhältnis > 25 beträgt der Zuordnungswert 1 Masse-%. Zudem ist die festgestellte Überschreitung des TOC-Wertes als nicht einstufungsrelevant zu beurteilen.

²⁾ Bei Überschreitungen ist die Ursache zu prüfen

³⁾ Bodenmaterial mit Zuordnungswerten > 3 mg/kg und ≤ 9 mg/kg sollte nur in Gebieten mit hydrogeologisch günstigen Deckschichten eingebaut werden. Einstufung in die Einbauklasse Z 1 sofern in Gebieten mit hydrogeologisch ungünstigen Deckschichten, Einstufung in die Einbauklasse Z 2, sofern in Gebieten mit hydrogeologisch günstigen Deckschichten verwertet werden soll.

⁴⁾ Überschreitung des Parameters C₁₀ - C₄₀ die auf teerfreie Asphaltaufbruchanteile zurückgeführt werden können sind, aus umwelttechnischer Sicht, als unproblematisch zu beurteilen.

⁵⁾ Humusgehalt des Bodens kleiner 8 %

		Anla	ge 1	1.1		
Probenahme- und Probenvorbehar	ndlungsprotokoll nach LA					
Projekt:	64372 Ober-Ramstadt (Modau Städtebauliches Konzept, "Ode straße SÜD") - Errichtung eine	r Wohnbebauung,			
Projekt-Nr.:			B 19-132	8-1		
Allgemeine Angaben						
Veranlasser / Auftraggeber:	Objekt Modaublick GmbH & Co	o. KG				
Landkreis / Ort / Straße:	Wiesbaden / 65197 Wiesbader		lee 6			
Probenbezeichnung:		•	MP Bode	n 1		
Grund der Probenahme:	abfallrechtliche Deklarationsan	alytik				
Probenahmetag / Uhrzeit:	03.09.2019 / 10.00 bis 15.45 U	•				
Probenehmer / Dienststelle / Firma:	Hr. Kern, sen. und Hr. Kern, jr.		olabor Sprendlinge			
Anwesende Personen:	-	, g				
Herkunft des Abfalls:	Deklaration der zu erwartend böden - Bereich Odenwaldst		ritterungslehm-			
Vermutete Schadstoffe / Gefährdungen:	unspezifischer Verdacht / keine	e Gefährdungen				
Untersuchungsstelle:	Wessling GmbH, Weiterstadt					
Vor-Ort-Gegebenheiten						
Abfallart / Allgemeine Beschreibung:	Boden / Lehm- und Verwitterur und mit Metamorphitgrus	ngslehmböden, teil	s schwach feinkie	sig		
	Fremdstoffanteile < 10 Vol%	X Fremdstoffar	nteile > 10 Vol%			
Gesamtvolumen / Form der Lagerung:	dem AG bekannt / in situ					
Lagerungsdauer:	mehrere Jahre					
Einflüsse auf das Abfallmaterial (z.B.Witterung)	16° C bis 26° C und sonnig im	Zuge der Probena	hme			
Probenahmegerät / Probenbehälter:	Probenahmegerät	ter				
	Handschaufel	10 L PE-Eim	er (Feldprobe)	Х		
	Rammkernsonde DN60/40	X 1 L PE-Dose	(Laborprobe)	Х		
	handgeführte Bohrschappe DN75	0,5 L Braung				
Probenahmeverfahren:	Entnahme einer Einzelprobe at (Einzelproben siehe Anlage 2 z 29.09.2019)		•			
Masse der Feldprobe:			ca. 15	kg		
Anzahl der Einzel-/Misch-/Laborproben	10 EP / 3 MP / 1 LP					
Anzahl der Einzelproben je Mischprobe:	1 bis 5 EP					
Probenvorbehandlung:	Homogenisierung und Verjüng mittels Vierteln zu einer Laborp	•		ing		
Masse der Laborprobe:			1,76	kg		
Vor-Ort-Untersuchung / Analytik:	keine / Umfang gemäß Anhang "Entsorgung von Bauabfällen"					
Bemerkungen:	keine		A			
Lageplan:	siehe Lageplan / Anlage 1		- () MAL			
Ort: Ober-Ramstadt (Modau)	Datum:	03.09.2019				
Probentransport und - lagerung:	Transporbox, Lagerung bis zum 06.09.2019 Unterschri					
Übergabe an die Untersuchungstelle:	Datum:	06.09.2019				

			Anlage		1.2					
Probenahme- und Probenvorbehar	<u> </u>									
Projekt:	64372 Ober-Ramstadt (Modau) Städtebauliches Konzept, "Oder straße SÜD"				-k					
Projekt-Nr.:				B 19-132	8-1					
Allgemeine Angaben										
Veranlasser / Auftraggeber:	Objekt Modaublick GmbH & Co.	. KC								
Landkreis / Ort / Straße:	Wiesbaden / 65197 Wiesbaden									
Probenbezeichnung:				MP Bode	n 2					
Grund der Probenahme:	abfallrechtliche Deklarationsana	alvti	k							
Probenahmetag / Uhrzeit:	03.09.2019 / 10.00 bis 15.45 Uh	•	·-							
Probenehmer / Dienststelle / Firma:	Hr. Kern, sen. und Hr. Kern, jr. /		ide KFRN-geolabo	r Sprendlinge	n					
Anwesende Personen:	-	-	ido NEINI goolabo	r opronamigo	-					
Herkunft des Abfalls:	Deklaration des zu erwartende Odenwaldstraße Süd	en l	Felsaushubs - Be	reich						
Vermutete Schadstoffe / Gefährdungen:	unspezifischer Verdacht / keine	Ge	fährdungen							
Untersuchungsstelle:	Wessling GmbH, Weiterstadt									
Vor-Ort-Gegebenheiten										
Abfallart / Allgemeine Beschreibung:	Boden / Felsaushub - Metamorp	ohit	(Gneis)							
	Fremdstoffanteile < 10 Vol%		Fremdstoffanteile	> 10 Vol%	Т					
Gesamtvolumen / Form der Lagerung:	dem AG bekannt / in situ	17.								
Lagerungsdauer:	mehrere Jahre									
Einflüsse auf das Abfallmaterial (z.B.Witterung)	16° C bis 26° C und sonnig im 2	⁷ ua	e der Probenahme							
Probenahmegerät / Probenbehälter:	Probenahmegerät Probenbehälter									
Probenanmegerat / Probenbehalter:	Handschaufel		10 L PE-Eimer (F	eldnrohe)	Χ					
	Rammkernsonde DN60/40	×	1 L PE-Dose (Lab	·	X					
	handgeführte Bohrschappe DN75		0,5 L Braunglas	отргово)						
Probenahmeverfahren:	Entnahme einer Einzelprobe au (Einzelproben siehe Anlage 2 zu 29.09.2019)		•							
Masse der Feldprobe:				ca. 15	kg					
Anzahl der Einzel-/Misch-/Laborproben	4 EP / 2 MP / 1 LP									
Anzahl der Einzelproben je Mischprobe:	1 bis 3 EP									
Probenvorbehandlung:	Homogenisierung und Verjüngu mittels Vierteln zu einer Laborpi				ing					
Masse der Laborprobe:				1,67	kg					
Vor-Ort-Untersuchung / Analytik:	keine / Umfang gemäß Anhang "Entsorgung von Bauabfällen" (3 - Merkblatt						
Bemerkungen:	keine			A						
Lageplan:	siehe Lageplan / Anlage 1									
Ort: Ober-Ramstadt (Modau)	Datum:	03	3.09.2019							
Probentransport und - lagerung:	Transporbox, Lagerung bis zum	06	.09.2019	Unterschr	ift					
Übergabe an die Untersuchungstelle:	Datum:	06	5.09.2019							

Probenahme- und Probenvorbehar	ndlungsprotokoll nach I A	Anlage		1.3				
Projekt:	64372 Ober-Ramstadt (Modau)							
Projekt.	Städtebauliches Konzept, "Ode straße SÜD"			-k				
Projekt-Nr.:			B 19-132	8-1				
Allgemeine Angaben								
Veranlasser / Auftraggeber:	Objekt Modaublick GmbH & Co	. KG						
Landkreis / Ort / Straße:	Wiesbaden / 65197 Wiesbader		}					
Probenbezeichnung:		.,, <u></u>	MP Bode	n 3				
Grund der Probenahme:	abfallrechtliche Deklarationsana	alvtik	IIII Bodo					
Probenahmetag / Uhrzeit:	04.09.2019 / 10.00 bis 16.00 U							
Probenehmer / Dienststelle / Firma:	Hr. Kern, sen. und Hr. Kern, jr.		r Sprendlinge	<u> </u>				
	- L. Kerri, Seri. uria Fir. Kerri, ji.	beide KEKIN-geolabo	or Sprendinge					
Anwesende Personen: Herkunft des Abfalls:	Deklaration der zu erwartend	an Lahm- & Varwitta	ungelahm-					
Herkuriit des Abidiis.	böden - Bereich Odenwaldstr		ungsienin-					
Vermutete Schadstoffe / Gefährdungen:	unspezifischer Verdacht / keine	Gefährdungen						
Untersuchungsstelle:	Wessling GmbH, Weiterstadt							
Vor-Ort-Gegebenheiten								
Abfallart / Allgemeine Beschreibung:	Boden / Lehm- und Verwitterun	gslehmböden, teils sc	hwach feinkie	sig				
	und mit Metamorphitgrus							
	Fremdstoffanteile < 10 Vol%	X Fremdstoffanteile	> 10 Vol%					
Gesamtvolumen / Form der Lagerung:	dem AG bekannt / in situ							
Lagerungsdauer:	mehrere Jahre							
Einflüsse auf das Abfallmaterial (z.B.Witterung)	17° C bis 28° C und sonnig im 2	Zuge der Probenahme	,					
Probenahmegerät / Probenbehälter:	Probenahmegerät Probenbehälter							
	Handschaufel	10 L PE-Eimer (F	eldprobe)	X				
	Rammkernsonde DN60/40	X 1 L PE-Dose (Lat	oorprobe)	TX				
	handgeführte Bohrschappe DN75	0,5 L Braunglas						
Probenahmeverfahren:	Entnahme einer Einzelprobe au (Einzelproben siehe Anlage 2 z 29.09.2019)	•						
Masse der Feldprobe:			ca. 15	kg				
Anzahl der Einzel-/Misch-/Laborproben	10 EP / 3 MP / 1 LP							
Anzahl der Einzelproben je Mischprobe:	2 bis 5 EP							
Probenvorbehandlung:	Homogenisierung und Verjüngu	ung der Feldprobe dur	ch Probenteilu	ıng				
	mittels Vierteln zu einer Laborp	•		J				
Masse der Laborprobe:			1,65	kg				
Vor-Ort-Untersuchung / Analytik:	keine / Umfang gemäß Anhang "Entsorgung von Bauabfällen" (3 - Merkblatt					
Bemerkungen:	keine							
			A					
Lageplan:	siehe Lageplan / Anlage 1							
Ort: Ober-Ramstadt (Modau)	Datum: 04.09.2019							
Probentransport und - lagerung:	Transporbox, Lagerung bis zum 06.09.2019 Unterschri							
Übergabe an die Untersuchungstelle:	Datum:	06.09.2019						

			Anlage		1.4
Probenahme- und Probenvorbeha					
Projekt:	64372 Ober-Ramstadt (Modau) - Errichtung einer Wohnbebauung, Städtebauliches Konzept, "Odenwaldstraße NORD" und "Odenwald- straße SÜD"				
Projekt-Nr.:				B 19-132	B-1
Allgemeine Angaben					
Veranlasser / Auftraggeber:	Objekt Modaublick GmbH & Co. KG				
Landkreis / Ort / Straße:	Wiesbaden / 65197 Wiesbaden / Willy-Brandt-Allee 6				
Probenbezeichnung:			,	MP Bode	n 4
Grund der Probenahme:	abfallrechtliche Deklarationsanalytik				
Probenahmetag / Uhrzeit:	04.09.2019 / 10.00 bis 16.00 Uhr				
Probenehmer / Dienststelle / Firma:	Hr. Kern, sen. und Hr. Kern, jr. / beide KERN-geolabor Sprendlingen				
Anwesende Personen:	-				
Herkunft des Abfalls:	Deklaration des zu erwartenden Felsaushubs - Bereich Odenwaldstraße Süd				
Vermutete Schadstoffe / Gefährdungen:	unspezifischer Verdacht / keine Gefährdungen				
Untersuchungsstelle:	Wessling GmbH, Weiterstadt				
Vor-Ort-Gegebenheiten					
Abfallart / Allgemeine Beschreibung:	Boden / Felsaushub - Metamorphit (Gneis)				
	Fremdstoffanteile < 10 Vol%				
Gesamtvolumen / Form der Lagerung:	dem AG bekannt / in situ				
Lagerungsdauer:	mehrere Jahre				
Einflüsse auf das Abfallmaterial (z.B.Witterung)	17° C bis 28° C und sonnig im Zuge der Probenahme				
Probenahmegerät / Probenbehälter:	Probenbehälter Probenbehälter				
	Handschaufel		10 L PE-Eimer (Feldprobe)		
	Rammkernsonde DN60/40	Х	1 L PE-Dose (Laborprobe)		Х
	handgeführte Bohrschappe DN75		0,5 L Braunglas		
Probenahmeverfahren:	Entnahme einer Einzelprobe aus unserer Bohrung 6 (Einzelprobe siehe Anlage 2 zum Geotechnischen Bericht vom 29.09.2019)				
Masse der Feldprobe:				ca. 3	kg
Anzahl der Einzel-/Misch-/Laborproben	1 EP / 1 MP / 1 LP				
Anzahl der Einzelproben je Mischprobe:	1 EP				
Probenvorbehandlung:	Homogenisierung und Verjüngung der Feldprobe durch Probenteilung mittels Vierteln zu einer Laborprobe durch den Probennehmer				
Masse der Laborprobe:				1,40	kg
Vor-Ort-Untersuchung / Analytik:	keine / Umfang gemäß Anhang 1, Tabellen 1.1 bis 1.3 - Merkblatt "Entsorgung von Bauabfällen" (Stand 01.09.2018)				
Bemerkungen:	keine			A	
Lageplan:	siehe Lageplan / Anlage 1			1 / Jah	
Ort: Ober-Ramstadt (Modau)	Datum: 04.09.2019				
Probentransport und - lagerung:	Transporbox, Lagerung bis zum 06.09.2019 Unterschrift				
Übergabe an die Untersuchungstelle:	Datum:		5.09.2019	1	

